$W = \frac{1}{2}$ A

(^H, A), ^w $(\mathbf{1} \cdot \mathbf{1} \cdot \mathbf{1}$ M. ``**`**w``.' , **, 1** ¥) 1 . **J** / **,** / , 11 l,w ١ ,.L. 1 1. 1. 1 1 Å 1. l S $(\mathbf{1}') \mathbf{20}' \mathbf{1}' \mathbf{1}'$ \mathbf{k} , \mathbf{k} , \mathbf{i} , $\mathbf{21}$, $\mathbf{21}$, \mathbf{i} , \mathbf{i} , $\mathbf{1}$, $\mathbf{22}$, \mathbf{i}

1.111 , A, 👘 🖓 & Μ · · · · · · · · · · · · Signal distortion category: ´ **x** 11. 7 · · · · · · · · · · · · 7 11. H w **, .** W M. . 111. W, L . Probabilistic category: **, A,** ъM (**)))** . ¹.). Ι, & A₁. 11 111 . **, .B**) - - -Ш,**"** Hybrid category: , **k** .)) ,W **x**¹ 2 4'] H W ∭,_₩ , B & W, J B . L · · , •) *** * *** * 11* * * 1 A) ()

()) <u>|</u>4) · · · • 1 й**ң** М M& W, Ι.. 1.11.7 77.1.7 **ъ М' • N**B W, &-J) Т **! •** (p . **k** 1) ۲۰۲۲ (۲۰۱<u>_</u>M‰ ۲ W, & k M , **₿**¯‰) & W, ₩ ₩ k ^W, ¹ '[₩] k W, **'** ` , . 1 1791.7 1 77.1.7.1 ,. 11. ٦, - II - ⁷ ۸B ` 111' 19 &**x**. 1 M M)) Notations: $\frac{1}{1} = \frac{1}{1} = \frac{1}$ • 1 . ,

• 1

 $\cdot^{T}, E \cdot \cdot \cdot \cdot \langle \cdot \rangle$ $C^{m \times n} \xrightarrow{f_1} \cdots \xrightarrow{f_n} \xrightarrow{f_n} \cdots \xrightarrow{f_n} \xrightarrow{f_n} \xrightarrow{f_n} \cdots \xrightarrow{f_n} \xrightarrow{f_n} \xrightarrow{f_n} \cdots \xrightarrow{f_n} \cdots \xrightarrow{f_n} \xrightarrow{f_n} \cdots \xrightarrow{f$ $\sum_{i=1}^{N} \sum_{j=1}^{N} \frac{m \times n_{i}}{m_{i}} = \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1$ · · · · · · · ·

A. Expressing an FBMC/OQAM Signal With an Overlapping Structure

 $\mathbf{M} = \begin{bmatrix} \mathbf{k} & \mathbf{M} \\ \mathbf{k} & \mathbf{k} & \mathbf{M} \\ \mathbf{k} & \mathbf{k} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ \mathbf{k} & \mathbf{k} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ \mathbf{k} & \mathbf{k} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ \mathbf{k} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ \mathbf{k} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ \mathbf{k} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ \mathbf{k} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ \mathbf{k} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ \mathbf{k} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ \mathbf{k} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ \mathbf{k} & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ \mathbf{k} & \mathbf{M} & \mathbf{M} \\ \mathbf{k} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ \mathbf{k} & \mathbf{M}$ $\mathbf{d}^{0} \mathbf{d}^{1} \mathbf{d}^{\frac{M}{2}-1} \in \mathbb{R}^{N \times \frac{M}{2}}, \mathcal{W} \mathbf{d}^{m}$ $\mathbf{d}^{m} = d_{0}^{m} d_{1}^{m} \mathbf{d}_{N-1}^{m} \mathbf{1} \cdot d_{n}^{m}$ $d_{n}^{m} = a_{n}^{m} + jb_{n}^{m}, \mathcal{W} \mathbf{h}^{m}$ $\mathbf{D}^{\dagger} =$. *m*. \mathbf{W}^{n}

$$d_n^m = \begin{cases} a_n^{m-2} & m = 0 \ 2\mathbf{4} & M - 2 \\ b_n^{m-1-2} & m = 1 & M - 1 \end{cases}$$
(1)

$$\mathbf{A}^{\mathsf{r}} = \mathbf{A}^{\mathsf{r}} + \mathbf{A}^{\mathsf{r}} +$$

$$s \ t \ = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} d_n^m \underbrace{e^{j_{\overline{2}} \ m+n} \ e^{j2 \ nt \ T} g\left(t - m\frac{T}{2}\right)}_{g_{mn} \ t}$$
(2)

 \mathcal{F}^{W} $\begin{array}{c} (1) \\ (1) \\ (2) \\ (3) \\ (1) \\ (2)$ $g t \qquad g t$ $\mathbf{M}_{\mathbf{x}} = \mathbf{M}_{\mathbf{x}} =$

¢

2014 € et al.	* &	ē ā	¥.&	- .BA)	,	-& I ^M	77		_‱H; IM \	· ,	A, ¥	14 k	1	.в ^М .&/	м ^М ,	5 ₂ Mg))	1
	$\begin{pmatrix} 1 \end{pmatrix}$	0	0	0	j	0	0	0	1	0	0	0	-j	0	0	0	
	0	1	0	0	0	j	0	0	0	1	0	0	0	-j	0	0	
	0	0	1	0	0	0	j	0	0	0	1	0	0	0	-j	0	
	0	0	0	1	0	0	0	j	0	0	0	1	0	0	0	-j	
	-j	0	0	0	1	0	0	0	j	0	0	0	1	0	0	0	
	0	-j	0	0	0	1	0	0	0	j	0	0	0	1	0	0	
	0	0	-j	0	0	0	1	0	0	0	j	0	0	0	1	0	
	0	0	0	-j	0	0	0	1	0	0	0	j	0	0	0	1	(14)
$\mathbf{C}^* = 0.5 \times$	1	0	0	Õ	-i	0	0	0	1	0	0	0	i	0	0	0	(14)
	0	1	0	0	Ő	-i	0	0	0	1	0	0	0	i	0	0	
	0	0	1	0	0	Ő	-i	0	0	0	1	0	0	Ŭ	i	0	
	0	0	0	1	0	0	Ŏ	-i	0	0	0	1	0	0	0	i	
	l i	0	0	0	1	0	0	Ő	-i	0	0	0	1	0	0	0	
	0	i	0	0	0	1	0	0	Ő	-i	0	0	0	1	0	0	
	0	Ő	i	0	0	0	1	0	0	Ő	-i	0	0	0	1	0	
	0	0	0	j	0	0	0	1	0	0	Ő	-j	0	0	0	1 /	1
17)] ·	· · · x	· • •	C . ;	W	, [,] w ,w	<i>د</i>	Y Y .	J								

Index	Phase rotation vector tuple	Conversion vector tuple
1	$\tilde{\mathbf{p}}^1 = [1 \ 1 \ 1 \ 1]$	$\tilde{\mathbf{c}}^1 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$
2	$\tilde{\mathbf{p}}^2 = [-1 \ 1 \ 1 \ 1]$	$\tilde{\mathbf{c}}^2 = [1 \ -1 \ -1 \ -1]$
3	$\tilde{\mathbf{p}}^3 = [1 \ -1 \ 1 \ 1]$	$\tilde{\mathbf{c}}^3 = [1 - \mathbf{j} \mathbf{r}_1 \mathbf{j}]$
4		

$$C^{\mu} + C^{\mu} + C^{\mu$$

$$\mathbf{p}^{u} = \left[\underbrace{\left(\tilde{\mathbf{p}}^{u} \right)^{T} \left(\tilde{\mathbf{p}}^{u} \right)^{T}}_{QN} \left(\tilde{\mathbf{p}}^{u} \right)^{T}} \left(\tilde{\mathbf{p}}^{u} \right)^{T} \right]^{T} \in \mathbb{C}^{1 \times q}$$
(1)

 $\neg T$

$$\mathbf{c}^{u} = \begin{bmatrix} \mathbf{p}^{u} \end{bmatrix} \in \mathbb{C}^{1 \times} \tag{1}$$

$$\mathbf{C}^{u} = \left[\left(\mathbf{c}^{u} \right)^{\langle 0 \rangle} \left(\mathbf{c}^{u} \right)^{\langle 1 \rangle} \qquad \left(\mathbf{c}^{u} \right)^{\langle ON-1 \rangle} \right] \in \mathbb{C} \quad \times \quad (20)$$

2) Conversion Vector-Based Modulation: 1 N $x_{1}, ..., x = x_{1} x_{2}$ $x_{N} = x_{1} x_{2}$

$$\mathbf{s}^{u} = \mathbf{C}^{u} \cdot \mathbf{s}^{1} \in \mathbb{R}^{1 \times}$$
 $u = 2$ U (21)

$$g_{1} = g_{1} + g_{2} + g_{3} + g_{4} + g_{4$$

$$\mathbf{s}_{L}^{u} = \left[\underbrace{\left(\mathbf{s}^{u}\right)^{T} \ \left(\mathbf{s}^{u}\right)^{T} \ \left(\mathbf{s}^{u}\right)^{T}}_{\mathbf{s}^{u}} \left(\mathbf{s}^{u}\right)^{T}}\right]^{T} \in \mathbb{R}^{1 \times v}$$
(22)

$$\mathbf{s}_m^u = \mathbf{s}_L \cdot g \in \mathbb{R}^{1 \times r}$$
 (2)

$$\mathbf{s}^{u} t = \sum_{\substack{m'=1\\m'=1}}^{m-1} \mathbf{s}_{m'}^{u'''} + \underbrace{\mathbf{s}_{m}^{u}}_{m'} \qquad (\mathbf{2})$$

- Part Press - L

$$\mathcal{W} \qquad m' \in \{1 \ 2 \qquad M-1\}, \mathbf{s}_{m'}^{u_{min}^m} \qquad \mathbf{s}_{m'} \quad \mathbf$$

) PAPR Calculation: T_o , T_o , T

$$PAPR_{T_0}^{u} = \frac{t \in T_0 |\mathbf{s}^u t|^2}{\frac{1}{T_0} \int_{T_0} |\mathbf{s}^u t|^2 dt} \ u \in \{1 \ 2 \ U\} \ (2 \)$$

$$T_{o} \qquad T_{o} \qquad M \qquad T_{0} \qquad T_{0} \qquad T_{0} \qquad T_{0} \qquad T_{0} =$$

$$u_{min} = \frac{1}{0 < u < U_{-1}} \frac{1}{PAPR_{T_0}^u}$$
(2.)

) Update: $\mathbf{W}^{(1)}$

$$\mathbf{s}_{m'+1}^{u_{min}^{m'+1}} = \mathbf{s}^{u_{min}} t$$
 (2.)

	Number of Multiplications	Number of Additions
DSLM scheme	$UM\frac{ON}{2}\log_2(ON)$	$UMON \log_2(ON)$
C-DSLM scheme	$M\frac{ON}{2}\log_2(ON)$	$\frac{MON\log_2(ON) + 3(U - 1)MON}{1)MON}$

$$\mathbf{SI} = \mathbf{SI} \quad u_{min} \tag{2}$$

 $m = m + 1, \dots, m = \mathbf{Step 2}, \dots, m = M.$

C. Complexity Evaluation

$$= \left(1 - \frac{1}{1 - \frac{$$

A N_{1} N_{1} N_{1} N_{1} N_{2} $N_$

Authorized licensed use limited to: China University of Petroleum. Downloaded on March 12,2021 at 00:34:15 UTC from IEEE Xplore. Restrictions apply.

T

WH Get al. 2. & Z S E & - DAY . & M. Z , M. S SE MS , A, E W. , BM& AM S SE MS $M = \frac{M}{M} =$

		U :	= 4	U :	= 8	<i>U</i> = 16		
] o p	Number f Multi- lications	Number of Addi- tions	Number of Multi- plications	Number of Addi- tions	Number of Multi- plications	Number of Addi- tions	
DSLM scheme	4	409600	819200	819200	1638400	1638400	3276800	

C-DSLM

scheme

 $\mathcal{F}_{\mathbf{x}}^{\mathbf{W}} = \frac{\mathbf{x}^{\mathbf{x}} + \mathbf{x}^{\mathbf{x}} + \mathbf{x}^$

A&K **► € M**

- ^w, <u>,</u> <u>k</u>, <u>k</u>, <u>v</u>, <u>,</u>
- • •

BIBB 2

- 1 (1, 1), (1, 2), (1
- $\begin{array}{c} Commun., \\ & & \\$ $\begin{array}{c} \mathbf{A} \\ \mathbf{$ ĥ
- $\mathbf{K} = \mathbf{K} + \mathbf{K} +$

- $\begin{array}{c} \textbf{B} \textbf{W} & \textbf{M} & \textbf{M} & \textbf{M} \\ \textbf{B} \textbf{W} & \textbf{M} & \textbf{M} & \textbf{M} \\ \textbf{H} \textbf{W} & \textbf{M} & \textbf{M} & \textbf{M} \\ \textbf{H} \textbf{W} & \textbf{M} & \textbf{M} & \textbf{M} \\ \textbf{H} \textbf{W} & \textbf{M} & \textbf{M} & \textbf{M} \\ \textbf{W} & \textbf{M} & \textbf{M} & \textbf{M} & \textbf{M} \\ \textbf{W} & \textbf{M} & \textbf{M} & \textbf{M} & \textbf{M} \\ \textbf{W} & \textbf{M} & \textbf{M} & \textbf{M} & \textbf{M} \\ \textbf{W} & \textbf{M} & \textbf{M} & \textbf{M} & \textbf{M} \\ \textbf{W} & \textbf{M} & \textbf{M} & \textbf{M} & \textbf{M} & \textbf{M} \\ \textbf{W} & \textbf{M} & \textbf{M} & \textbf{M} & \textbf{M} & \textbf{M} \\ \textbf{W} & \textbf{M} & \textbf{M} & \textbf{M} & \textbf{M} & \textbf{M} \\ \textbf{W} & \textbf{M} & \textbf{M} & \textbf{M} & \textbf{M} & \textbf{M} \\ \textbf{W} & \textbf{M} & \textbf{M} & \textbf{M} & \textbf{M} & \textbf{M} & \textbf{M} \\ \textbf{W} & \textbf{M} \\ \textbf{M} & \textbf{M}$
- **A** $(A = 1)^{W}$ **b** $(A = 1)^{W}$ **c** $(A = 1)^{W}$ **c** (A = 1
- A. A_{-} , W_{k} , M_{-} , A. H_{-} , A_{-} , W_{k} , M_{-} , A_{-} , H_{-} , A_{-} , H_{-} , A_{-} , H_{-} , A_{-} , H_{-} ,
- IEEE Trans. Broadcast, 12, 2, 4, 17, 4, 201.10 **.B** K^W
- . _хт, А. .., 12 $\begin{array}{c} \textbf{IEEE Access,} \\ \textbf{A} \quad \textbf{K} \\ \textbf{K}$
- A. K. M. M. A. Proc. IEEE Workshop Signal

- , 111, **M** 1.
- Trans Broadcast. \mathbf{H} $\mathbf{\mathbf$
- l
- 20

- 21 A. \mathbf{x} , \mathbf{A} , \mathbf{k} , \mathbf{k} , \mathbf{k} , \mathbf{B} , \mathbf{k} , , Electron. Lett., $0, 2, ..., 20/20^{-1}$ 14

- Image: Solution of the second seco

- AM Proc. World Congr. Inf. Technol. Comput. Appl. (WCITCA), 201,
- Proc. World Congr. Inf. Technol. Comput. Appl. (WCITCA), 201,

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

- . 201, .
- M. 201, ..., S. ..., K. ..., Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), ..., 2001, ..., 3 1... 3 20.

ΣΣΣ A ⁵A& ⁵ B A & ⁵A⁵ C , ¹ ..., , ¹, Σ ^MB 2020