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Abstract: The purpose of crowd counting is to estimate the number of pedestrians in crowd images. Crowd
counting or density estimation is an extremely challenging task in computer vision, due to large scale varia-
tions and dense scene. Current methods solve these issues by compounding multi-scale Convolutional Neural
Network with different receptive fields. In this paper, a novel end-to-end architecture based on Multi-Scale Ad-
versarial Convolutional Neural Network (MSA-CNN) is proposed to generate crowd density and estimate the
amount of crowd. Firstly, a multi-scale network is used to extract the globally relevant features in the crowd
image, and then fractionally-strided convolutional layers are designed for up-sampling the output to recover
the loss of crucial details caused by the earlier max pooling layers. An adversarial loss is directly employed to
shrink the estimated value into the realistic subspace to reduce the blurring effect of density estimation. Joint
training is performed in an end-to-end fashion using a combination of Adversarial loss and Euclidean loss.
The two losses are integrated via a joint training scheme to improve density estimation performance. We con-
duct some extensive experiments on available datasets to show the significant improvements and supremacy
of the proposed approach over the available state-of-the-art approaches.
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1 Introduction
With the rapid growth in the urban population, public safety issues have become the focus of attention in
video surveillance. In a real-time analysis of crowds such as public gatherings and sports events, it is neces-
sary to estimate the number and density map of the population. In recent years, crowd analysis has attracted
many researchers. Not only it can be applied to urban planning [1], scene understanding [2], and traffic mon-
itoring, but also to the counting tasks of other domains, such as counting cells under the microscope [3–6],
vehicle counts [7–11]. However, due to the presence of various complexities, such as complex illumination,
pedestrian occlusion in a dense scene, perspective distortion and non-uniform distribution of people, it is
a challenging task in computer vision and these issues result in an accuracy of estimation that is far from
optimal.
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Some earlier methods of crowd counting considered it as a computer vision problem, counting the num-
ber of pedestrians by detecting and tracking, and then training a detector to detect the number of pedestri-
ans appearing in the crowd image. However, if the crowd is very dense, the occlusion between pedestrians
is more serious, which may result in poor detection. Moreover these methods are based on the traditional
hand-featured regression, achieving better performance than detection through regressing the number of
pedestrians on the image. Additionally, this method uses manual features like HOG [12], and therefore diffi-
cult to achieve the best result due to insufficient expression of local features, angle, and large-scale variation
of the crowd image. Inspired by a recent successful solution of multiple computer vision tasks with convo-
lutional neural network (CNN), many CNN-based methods [13–15] were developed to solve these issues and
obtained remarkable success. For instance [15–17] used a multi-channel CNN structure to emphasize the scale
variation and achieved good results in the crowd density estimation, using different sizes of convolutional
kernels to deal with different sizes of a head in input images and try to solve the head scale variation. In the
crowd density map, each marking point represents the location of a pedestrian, and the number of crowd
is obtained by pixel integration in the density map. Current CNN-based methods [8, 18, 19] use multi-path
convolutional neural network, and Euclidean loss is used as an objective function to optimize model, each
sub-network uses different convolutional kernel sizes to extract multi-scale features. Local optimization is
achieved by minimizing Euclidean loss, and finally fine-tuned all sub-network by joint training.

To solve these issues based on the multi-column CNN [19] which has a success of working in the crowd
counting, a new crowd counting framework called Multi-Scale Adversarial Convolutional Neural Network
(MSA-CNN) is proposed. The multi-column is used to extract high-dimensional features of the crowd image,
and then a series of fractionally-strided convolutional layers process to restore the detail of features caused by
max-pooling layers, so that to obtain a high-resolution density map. In addition, inspired by Generative Ad-
versarial Network (GAN) in successful image interpretation [20], we propose the adversarial training method
to reduce the blurring effect and improve the quality of the density map. Figure 1 shows the result of our
method on one sample. In this paper, our main contributions are summarized as follows:

1. We proposed a novel parameter-optimized MSA-CNN to solve crowd counting and density estimation
issues.

2. After extracting the high-level image features of the crowd, several fractionally-strided convolutional
layers are used to restore some details of the image caused by the previous max-pooling, therefore
improving the quality of the estimated density map, and ultimately improving the accuracy.

3. We conduct extensive experiments on the two representative datasets [9, 12] and compared the out-
comes with existing methods. Our method was proved superior to the current state-of-the-art perfor-
mance.

(a) (b) (c)

Figure 1: The proposed method results, (a) input image (the part_A from ShanghaiTech dataset), (b) ground density map, (c)
estimated density map via our proposed method.
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2 Related works
Current crowd density estimation methods are broadly divided into: 1) detection-based methods, 2) regression
methods based on hand-crafted features, and 3) CNN-based methods. These are briefly explained as follows:

Detection-Based methods:
The initial adoption of a single-person-based framework considers the population as a single entity group
to estimate the number of pedestrians [7, 9, 12, 21, 22], and none of these methods are applied for a single
still image. Since early related research simply focused on video surveillance scenarios to fully explore the
information of motion and appearance. For instance, [12] trained dynamic detectors pass two consecutive
segments of a video sequence frames to capture this information, and then the recurrent neural network
framework has been used for head detection in the crowd scene. [23] use GoogLeNet’s deep functionality
in the Long Short-Term Memory (LSTM) framework to return the bounding box of the head. [4, 5] proposed a
trajectory clustering method based on tracking visual features to finish crowd counting in video surveillance,
but this method also cannot estimate the number of people in a single static image. Moreover, the detection
and tracking method seriously affects the performance of the estimated population when the crowd is very
dense and the image prone to occlusion.

Regression-Based methods:
the most widely used methods for crowd counting is feature-based regression [12–14, 24], which regressed
the scalar values (number of people) or density maps [3, 24]. The main steps of the method are divided into:
(1) extracting the foreground; (2) extracting various features of the foreground, such as the area of the crowd
[3, 12, 13, 16], the edge information [3, 12, 14, 25], or texture information [3, 6], and (3) estimating the number
of persons with a regression function. The linear [1] or piece-wise linear [15] function is a relatively simple
model and exhibits good performance. Other more effective methods are Ridge Regression (RR) [3], Gaussian
Process Regression (GPR) [13] and Neural Network (NN) [26], these methods are suitable for crowd counting
algorithms of monitoring videos, due to foreground segmentation. It is very difficult task and the performance
of the algorithm is largely affected by it. There are also some works for crowd counting of still images, [8] sug-
gested making use of multi-source information to estimate the number of people in a single image. [27] esti-
mated counts by combining information from multiple sources, such as point of interest (SIFT) [28], fourier
analysis, wavelet decomposition, Gray-Level Co-occurrence Matrix (GLCM) features, and low confidence head
detections. [17] trained a support vector machine (SVM) with features extracted from a pre-trained model, and
then estimated the number of people in a single still image. The regression-based methods are better than
the detection methods, this method can only extract low-level features, so it is also not the best way to map
features to the number of pedestrians.

CNN-Based method:
Recent CNN-based methods are also a kind of regression methods. It is introduced separately because it is
different from the traditional regression methods which are based on traditional hand-crafted features. It
is possible to extract high-dimensional features of the crowd images by the convolutional operation. [15]
proposed a CNN-based method for crowd counting in different scenes, and then fine-tuned the pre-trained
network based on foreground information when passing a test data, this method achieves good performance
on the most of existing datasets, but their train and test datasets require foreground maps, while in crowd
counting applications, there are no foreground maps available. In [14, 19], a multi-column network structure
is used to deal with the scale change problem. Using traditional CNN, each column is separately trained; the
obtained three models are merged and then fine-tuned them. The fully connected layer uses a 1 × 1 convolu-
tion kernel to fuse the feature maps from a particular scale of training and regress a density map. Inspired by
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fore it will tend to blur map on edges and outliers of the image [26]. However, when using adversarial loss, it
will judge whether a pixel is “real” or “fake”, by optimizing loss function to encourage the “fake” have the
same as “real” pixel distribution. In principle, it is possible to prompt a clear image and avoid blur as well, so
it is impossible to generate blurred images [31]. But if we simply use the adversarial loss as objective function
may cause exceptions in the spatial structure and even it exists outliers in the input label space. So we refer
to the previous work [20, 32, 33] and further add a conventional loss to improve the solution. The following
sub-sections discuss the details of the objective function formula.

Figure 2: Generator stage: the first part is used to extract high-dimensional feature map, which is basically composed of con-
volutional layer-PReLU (Conv-PReLU), pooling represents max-pooling layer, factor is 2; then the second is fractionally-strided
convolutional phase, its basic composition is deconvolution-ReLU (DeConv-ReLU).

Table 1: The detail of parameters setting.

layer parameter layer parameter
conv1 11×11×16 conv,padding 5 conv2-3 5×5×20 conv,padding 2
conv2 9×9×24 conv,padding 4 conv2-4 3×3×16 conv,padding 1
conv3 7×7×32 conv,padding 3 conv3-1 5×5×10 conv,padding 2
conv1-1 9×9×16 conv,padding 5 pool3-1 3×3×24 conv,padding 1
pool1-1 2×2 max-pooling,stride 2 conv3-2 3×3×48 conv,padding 1
conv1-2 7×7×32 conv,padding 3 pool3-2 2×2 max-pooling,stride 2
pool1-2 2×2 max-pooling,stride 2 conv3-3 3×3×24 conv,padding 1
conv1-3 7×7×16 conv,padding 3 conv3-4 3×3×20 conv,padding 1
conv1-4 5×5×12 conv,padding 2 conv4 9×9×48 conv,padding 4
conv2 7×7×20 conv,padding 3 conv5 7×7×24 conv,padding 3
pool2-1 2×2 max-pooling,stride 2 decv6 2×2×32 deconv,stride 2
conv2-2 5×5×40 conv,padding 2 conv7 5×5×20 conv,padding 2
pool2-2 2×2 max-pooling,stride 2 decv8 2×2×16 deconv,stride 2
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Algorithm 1 The training process of estimating density map for our method

Input: N training image patches {Xi}Ni=1 with ground truth density maps {PGTi }Ni=1, and the size of each
ground truth density map is 1

4 of original image
Output: Trained Generator network parameters ΘG which includes ΘG1 and ΘG2

1: Initialize ΘG1 with random Gaussian weights
2: Pre-training the first stage of generator network for Td epochs
3: for t = 1 to Td do do
4: for i = 1 to N do do
5: ℓG1

i =argminLE
6: update ΘG1 by stochastic gradient descent
7: end for
8: end for
9: /*Fine-tuning the first generator network parameters and Training for Tc epochs*/

10: Initialize parameters of discriminator network as ΘD and Fractionally-strided phase as ΘG2 with random
Gaussian weights

11: for i = 1 to Tc do do
12: for i = 1 to N do do
13: ℓIi=argminLI
14: update ΘD, ΘG2 and fine-tuning ΘG1
15: end for
16: end for

3.2 Objective function

It has been widely acknowledged that Euclidean loss has certain disadvantages [34] such as sensitivity to
outliers and image blur. Motivated by GAN in image reconstruction and these observations, a combined
scheme of Euclidean loss and weighted adversarial loss as the final loss function for solving the issue of
L2-minimization was incorporated [20]. The objective function is as follow:

• Euclidean loss

LE = 1
N

N∑︁
i=1

||GθG(Xi , Θ) − PGTi ||2 (1)

Where N is the number of training samples, Xi is the ith training sample, Θ representing the network
parameters, GθG(Xi , Θ) indicates the density maps and are estimated by the network, PGTi representing
the ith ground true density map.

• Adversarial loss
LA = − log(DθD(GθG(I))) (2)

Where GθG and DθD are the outputs of the Generator and Discriminator network structures respectively,
LA representing the adversarial loss function. I indicates the input crowd image.

• Final objective
LI = LE + λLA (3)

In this formula, λ indicates the weight multiple that connects the two functions. We set the value is
10−3, LA is the Adversarial loss function, while LE is Euclidean loss.

3.3 Training and Implementation Details

In training and testing phase, the ground truth density map data is necessary. The original data provides the
crowd image and the corresponding annotated head position, so we only need to convert the available point
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4.1 Experiment on ShanghaiTech dataset

The ShanghaiTech dataset was created by [19]. The dataset includes 1,198 annotated indoor and streetscape
images with a total of 33015 pedestrians, as well as crowd images at different angles, and consists of two parts:
482 images in Part_A and 716 images in Part_B. The two parts of the dataset are further divided into a train set
and a test set. The train set of Part_A and Part_B are 300 and 400 images respectively, the rest of the images
are used as test dataset. The proposed method is compared with the recent five best methods: [15], MCNN [19],
Switching-CNN [18], Cascaded-MTL [35], and CP-CNN [30] on ShanghaiTech datasets. Comparative results are
shown in Table 2. [15] proposed two learning objectives for crowd counting and density estimation. Further,
they learned the network by alternately training two objective functions. [19] used a multi-column CNN to
solve the multi-scale difference issue on crowd images and proposed a density map generation method. [18]
proposed a switched CNN classifier, it can select the suitable network branch to solve the problem of large-
scale and perspective variation, and at the same time improve the accuracy of crowd estimation. [35] proposed
a multi-task cascade CNN that utilizes a high-level prior to learn crowd count classification and density map
estimation tasks. In [30] the author extracted global and local context information of the image to generate a
high-quality density map and lower estimation error. It can be seen from Table 2 that result of MSA-CNN com-

Figure 4: The density map estimated by MSA-CNN on the Shanghai Tech Part_B dataset, the first column is test images, the
second column is ground truth density map, and the third column is the estimated density map by our approach(MSA-CNN).

Table 2: Comparison results on ShanghaiTech dataset.

Part_A Part_B
Method MAE MSE MAE MSE
[15] 181.8 277.7 32.0 49.8
MCNN [19] 110.2 173.2 26.4 41.3
Cascaded-MTL [35] 101.3 152.4 20.0 31.1
Switching-CNN [18] 90.4 135.0 21.6 33.4
CP-CNN [30] 73.6 106.4 20.1 30.1
MSA-CNN (ours) 72.4 104.7 22.7 35.4
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pared with other methods on this dataset. Figs. 4 and 5 illustrate some samples of the SahanghaiTech dataset.
These samples are predicted by MSA-CNN along with the ground truth, our proposed method achieves lower
count error.

Figure 5: The density map estimated by MSA-CNN on the Shanghai Tech Part_B dataset, the first column is test images, the
second column is ground truth density map, and the third column is estimated density map by our approach (MSA-CNN).

4.2 Experiment on UCF_CC_50 dataset

UCF_CC_50 was first introduced by [12]. It is a challenging dataset which consists of 50 images of the crowd,
with a total of 63,974 persons. The crowd counts range from 96 to 4543. There is a large variation of crowd den-
sity in the image. Following [12], we also use five-fold cross-validation to report the average test performance.
The author in [15] proposed to combine multiple source information such as Fourier analysis, head detection
and texture features to generate density map and crowd counting. A comparative result with the existing six
methods is shown in Table 3. Our method achieves lower error than other methods. Figure 6 shows some
examples of visualization obtained by our method on the UCF_CC_50 dataset.

4.3 Comparisons with State-of-the-art

The proposed approach is compared with several state-of-the-art methods on two benchmarks, and the re-
sults are shown in Table 2, 3. Table 2 indicates comparison on ShanghaiTech datasets; the proposed MSA-
CNN obtains significant improvement over prior methods, and acquires the best MAE and MSE on the Part_A
dataset. This dataset is closer to the realistic monitoring screens than the others, which states that our algo-
rithm has a good performance on the actual scenes and achieves better stability. It also shows a good result
on the Part_B dataset, it shows the robustness of the proposed method which can be applied to scenes with
sparse crowds. In Table 3, we compare the performance of MSA-CNN with other methods using MAE and MSE
as metrics on the UCCF_CC_50 dataset. MSA-CNN outperforms all others methods in MAE and gets a com-
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Table 3: Comparisons on UCCF_CC_50 dataset.

Method MAE MSE
[12] 419.5 541.6
[15] 467.0 498.5
MCNN [19] 377.6 173.2
Cascaded-MTL [35] 322.8 341.4
Switching-CNN [18] 318.1 439.2
CP-CNN [30] 295.8 320.9
MSA-CNN (ours) 293.9 361.6

Figure 6: The density map estimated by MSA-CNN on the UCF_CC_50 dataset, the first column is test images, the second is
ground truth density map, and the third is estimated density map by our approach (MSA-CNN).

petitive MSE score, which indicates the robustness of predicted count. Considering practical applications of
crowd counting algorithm, we perform a simple and practical study. As shown in Table 4, MCNN has the
least parameters, and CP-CNN is 500 times more than MCNN. In contrast, our algorithm has a relatively small
amount of parameters.

Table 4: Number of parameters(in millions).

Method Number of parameters
[12] 22.5
MCNN [19] 0.13
Switching-CNN [18] 15.1
CP-CNN [30] 68.4
MSA-CNN (ours) 0.55
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5 Conclusion
In this paper, a multi-scale adversarial convolutional neural network is designed for estimating crowd den-
sity map and the number of pedestrians in crowd images. The improved multi-column convolutional neural
network is used to extract high-dimensional feature maps. These fractionally-strided convolutional layers
try to recover the loss of detail caused by previous max-pooling layers. Since, we adopted the advantage of
the superior performance of GAN in image reconstruction, thereby improving the resolution of the estimated
density map and reducing the crowd estimation error. The model is trained in an end-to-end manner by opti-
mizing a weighted combination of Euclidean loss and adversarial loss and the number of parameters is low.
A lot of experiments on challenging datasets are conducted, in contrast to the existing methods, our method
demonstrated significant improvements.
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