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a b s t r a c t 

With the increasing energy requirement and decreasing onshore reserves, offshore oil production has 

attracted increasing attention. A major challenge in offshore oil production is to minimize both the oper- 

ational costs and risks; one of the major risks is anomalies in the flows. However, optimization methods 
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Nomenclature 

i oil production well 

k well batch 

t time period 

Sets 

I oil production wells 

K well batches 

T time period 

Parameters 

h in convection heat transfer coefficient 

r radius of the tubing 

ρg the density of gas phase 

ρ1 the density of liquid phase 

H 1 the liquid holdup 

G the mass flow of the mixture 

λ the resistance coefficient 

λins thermal conductivity of insulation materials 

s thickness of the insulation blanket 

s tub thickness of the tubing 

�x valve opening change limit 

h max maximum wax deposit thickness 

A i , B i coefficients of polymer flooding of well i 

F d distribution density of wax 

I max maximum inventory capacity of oil 

I min minimum inventory capacity of oil 

T L +�L temperature of flowing-out 

a i 0 , a i 1 coefficients of pressure increase of well i 

b i 0 , b i 1 coefficients of pressure decrease of well i 

c 1 , c 2 coefficients of pressure variation equation which re- 

sult from combinations 

d k, t production demand of well batch k in time period t 

d t demand of production in period t 

e k pipe roughness of well batch k 

pe 1 power generation efficiency of diesel generator set 

in platform 

p low 

i 
up limit pressure of well i 

p 
up 
i 

down limit pressure of well i 

pl 0 inlet pressure 

x max 
i 

maximum production rate of well i 

x min 
i 

minimum production rate of well i 

αi cost of start-stop operation of unit i 

σ i coefficient for electricity consumption of valve in 

well i 

�L length of pipeline segment 

θ1 the line angle 

A the pipeline cross-sectional area 

T L temperature of flowing-in 

Ts temperature of fluid at the fluid entry point 

ρ is fluid density 

Gl density of wax 

Dr length of time period 

M suitable upper limit 

T length of planning horizons 

γ coefficient of inventory cost 

δ cost coefficient of polymer flooding 

θ punishment of delivery delay 

τ coefficient of wax removal cost 

p initial 
i 

initial bottom pressure for the well i 

I initial 
k 

initial inventory level for the oil batch k 

D k half of the radius of the annular region volume by 

uneven ups and downs 
m  
Variables 

Te temperature inside the pipe 

�E i, t recovery ratio differential of oil well i in period t 

I k , 1 initial inventory of well batch k 

I k, t inventory of well batch k in the time period t 

Ml k quality of the precipitated wax in pipeline of well 

batch k 

P i, t polymer flooding of well i in time period t 

Q acc heat accumulation 

Q in heat flow in 

Q out heat flow out 

Q r heat transferred 

SP i, t pressure differential in the well bore when the well 

i is shut in 

Tl k wax removal cycle of well batch k 

Vl k volume of the precipitated wax in pipeline of well 

batch k 

XP i, t pressure differential in the well bore when the well 

i is producing 

Y i, t 0–1variable indicating whether the well bore pres- 

sure reaches the maximum allowable value in pe- 

riod t when well i is closed 

ele cost consumption of energy 

p in 
i, 1 

initial pressure of well i 

p end 
i,t 

well bore pressure of well i at the end of period t 

p in 
i,t 

well bore pressure of well i at the beginning of pe- 

riod t 

pr k, t production supply of oil well batch k in the time 

period t 

pr t production supply in period t 

v k wax deposit rate in pipeline of well batch k 

wf i, t the occurrence of start −stop operation in equip- 

ment i during t week and t + + 1 week. 

w i, t 0–1 variable denoting whether well i is working in 

the period t 

x i, t production rate of oil in well i in the period t 

�Te difference in tem perature between the pipeline 

product and the ambient temperature outside 

h wax deposit thickness 

v fluid velocity in pipeline 

ele energy supply 

nteger nonlinear (MINLP) model for daily well scheduling in oil

elds, where the nonlinear reservoir behavior, the multiphase flow

n wells and constraints from the surface facilities are considered

o decide the operational status of wells (i.e. open or closed),

he allocation of wells to manifolds or separators, the allocation

f flow lines to separators, the well oil rates and the allocation

f gas-to-gas lift wells. Carvalho and Pinto (2006) proposed an

ILP approach, reformulated from an MINLP model, to determine

he assignment of platforms to wells and the timing for fixed

ssignments. In another study, a novel approach to scheduling the

tartup of oil and gas wells in multiple fields over a decade-plus

iscrete-time horizon was presented ( Kelly et al., 2017 ). The major

nnovation was to treat each well or well type as a batch-process

ith time-varying yields or production rates that follow the

eclining, decaying or diminishing curve profile. Tavallali and

arimi (2016) developed an MINLP approach for more holistic

ecisions on the order, placement ( Ozdogan and Horne, 2006 ;

avallali, 2013 ), timing, capacities, and allocations of new well

rillings and surface facilities such as manifolds, surface centers,

nd their interconnections, along with well production/injection

rofiles. Ortıź-Gómez et al., 2002 described three mixed integer

ulti-period optimization models of varying complexity for the
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Fig. 3. The behavior of the well bore pressure. 
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f the subsea well operation, injection operation, subsea delivery

peration and platform operation. In this paper, we propose an

ntegrated planning model to address these problems. 

. Mathematical model 

The integrated planning model defined as a multi-period

INLP has been developed considering both well operation and

ow assurance, taking the minimum value of the total operating

osts over the planning horizon as the objective function while

atisfying all the constraints. 

Several assumptions are made in this study as follows: 

(1) The production wells are separated and totally independent

of each other. It is natural because each well has its own

independent reservoir. 

(2) During the middle and later periods of oilfield develop-

ment, artificial lift technology and polymer flooding is

indispensable. 

(3) All the electric submersible pumps have the same working

characteristic curve. 

(4) Geological properties characterizing the well are available. 

(5) In the absence of polymerization flooding, oil recovery rate

remains the lowest. 

(6) The location of easily blocked pipeline section is known. 

With the above assumptions, the model relies on the following

iven information: 

(1) A planning horizon and planning period; 

(2) Production tasks for each batch of oil wells along the plan-

ning horizon; 

(3) Working load range of oil production wells; 

(4) A set of storage bins, their minimum and maximum stock

and initial inventories; 

(5) The penalty of switching operations and stock out; 

(6) A set of cost coefficient and model parameters. 

The decision variables are: 

(1) The production rate and operating state of each oil well in

each time period. 

(2) The detailed delivery quantity in each oil batch in each time

period. 

(3) The wax removal cycle of each oil well. 

(4) The polymer flooding injection policy, i.e. the injection time

and quantity. 

.1. Objective function 

Mathematically, the objective function is given as follows: 

in Z = Z 1 + Z 2 + Z 3 + Z 4 + Z 5 + Z 6 (1)

The objective described in Eq. (1) aims at minimizing the

verall cost ( Z ), which includes the oil well open-close switching

enalty ( Z 1 ), energy consumption ( Z 2 ), oil inventory ( Z 3 ), and

hemicals cost ( Z 4 ), wax removal cost ( Z 5 ), and the costs of stock

ut penalty ( Z 6 ). 

.2. Open-close operation of oil wells 

According to production task and inventory requirements, it is

ecessary to first determine the working state w i, t of the under-

ater tree in each time period which is related to the production

lan task, and is restricted by the downhole pressure. When the

ell is open, then the well bore pressure decreases, but if the well

s closed, then the pressure increases. 

Frequent open-close operations should be avoided. The switch-

ng cost can be expressed as Eqs. (2) –(4) , where w f i,t = 1 denotes
he occurrence of open-close switches operation. The state switch-

ng variable wf i, t is penalized in the target function, which can

imit wf i, t to 0 when there is no state switching operation. 

 1 = 

∑ 

i 

∑ 

t 

αi · w f i,t (2) 

 f i,t + w i,t ≥ w i,t+1 ∀ i ∈ I, t ∈ T (3)

 f i,t + w i,t+1 ≥ w i,t ∀ i ∈ I, t ∈ T (4)

Because of the resistance to the oil flow between the reservoir

nd the well bore, the well bore pressure usually decreases with

ime. A simple expression has often been used Eq. (5) ( Horne,

998 ) to describe such behavior: 

p end 
i,t = p in i,t −

141 . 2 x i,t Bμ

kh 

×
(

1 

2 

[
ln 

0 . 0 0 0246 kt 

�μc i r 
2 
i 

+ 0 . 80907 

])
∀ i ∈ I, t ∈ T (5) 

here B, μ, k, h , �, c i and r i are formation volume factor, viscosity,

ermeability, reservoir thickness, porosity, total system compress-

bility and wellbore radius respectively, and are experimentally

etermined geological properties. In this study, it is assumed that

he values of the geological properties of the well are known a

riori. Therefore Eq. (5) can be reformulated as Eq. (6) , 

p end 
i 

= p in 
i 

− c 1 x i,t ( ln Dr + c 2 ) ∀ i ∈ I, t ∈ T (6) 

here, c 1 , c 2 are the parameters calculated from Eq. (5) and Dr = t

s the duration. 

Fig. 3 represents the behavior of the well bore pressure. If

he well is open, i.e. w i,t = 1 , the well bore pressure will then

ecrease, and flowing pressure is expressed as Eqs. (7) –(8) where

P i, t indicates pressure drop. Eq. (9) describes the pressure

inimum requirement raised by reservoir engineers. For more

nformation, refer to Horne (1990) . 

X P i,t = πi x i,t a i 0 ( a i 1 + ln Dr ) ∀ i ∈ I, t ∈ T (7) 

p end 
i,t 

= p in 
i,t 

− X P i,t ∀ i ∈ I, t ∈ T (8) 

p in 
i,t 

− X P i,t ≥ p low 

i 
∀ i ∈ I, t ∈ T (9) 

When the well is closed, i.e. w i,t = 0 , two cases should be

onsidered shown in Eq. (10) –(11) . SP i, t is pressure increase. 

S P i,t = b i 0 ( b i 1 + ln Dr ) ( 1 − w i,t ) ∀ i ∈ I, t ∈ T (10) 
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onstraints for different batches of oil wells are expressed in

qs. (26) –(29) . Eq. (26) shows that final oil inventory I k, t is given

s the balance on the previous inventory level I k,t−1 plus pro-

uction amount of oil well batch k minus delivery amount pr k, t .

q. (27) provides the initial condition for the oil inventory. Storage

apacity constraint is described as Eq. (28) . Eq. (29) shows the in-

entory cost where γ denotes the cost coefficient of oil inventory. 

 k,t = I k,t−1 + 

∑ 

i ∈ K 
x i,t − p r k,t ∀ k ∈ K, t ∈ T (26)

 k, 1 = I initial 
k ∀ k ∈ K (27)

 

min ≤ I k,t ≤ I max ∀ k ∈ K, t ∈ T (28)

 3 = 

∑ 

k 

∑ 

t 

γ · I k,t (29) 

.5. Cost of polymer flooding 

During the middle and later periods of oilfield development,

njection of oil displacement agent is significant to increase the

il recovery. It can be described as Eqs. (30) –(32) . Based on the

ssumptions that were made at the beginning, the improvement

f oil recovery ratio can be expressed as Eq. (30) . The formula of

olymer flooding P i, t and recovery ratio �E i, t is represented as

q. (31) where A i and B i are the specific relationship coefficient

hich can show that P i, t is linear with �E i, t on semi-log coordi-

ate. There is a hypothesis that if polymer flooding is not injected

hen the oil recovery rate has been at the lowest production speed.

q. (32) shows the cost of polymer flooding in which δ denotes

he cost coefficient. 

E i,t = 

w i,t 

(
x i,t − x min 

i 

)
/ x min 

i 
∀ i ∈ I, t ∈ T (30)

log P i,t = A i + B i �E i,t ∀ i ∈ I, t ∈ T (31) 

 4 = 

∑ 

i 

∑ 

t 

δ · P i,t (32) 

.6. Flow assurance 

In deep water, extreme conditions such as low temperatures

nd high pressures promote the formation of solid in pipeline that

an potentially reduce or completely block the flowline. In this

ork, flow assurance is considered as constraints. 

.6.1. Hydrate formation prevention 

Pipeline temperature is of importance for hydrate formation

revention, so it is necessary to model it. For a specific point in

he pipeline, heat balance 28 is satisfied, shown as Eq. (33) , 

 in − Q out − Q r = Q acc (33) 

here Q in represents the incoming heat by convection in pipeline,

alculated as Eq. (34) ; Q out represents the heat taken away by

onvection, calculated as Eq. (35) ; Q r is the radial heat transfer, as

q. (37) . The heat stored in fluid is Q acc , as Eq. (36) . 

 in = ρC p v A T L �t (34) 

 out = ρC p v A T L +�L �t (35) 

 acc = ρC P A �L �T e (36)

 r = 

2 π r k 1 �L �t 
(
T e k,t − T out 

)
R 

∀ k ∈ K, t ∈ T (37)

t 
 t = 

1 

h in r 
+ 

1 

λins 

ln 

r + s + s tub 

r + s tub 

(38) 

here r denotes the radius of the pipeline, λins is the thermal

onductivity of insulation materials, h in is convection heat transfer

oefficient, s is the thickness of the insulation blanket, s tub is the

hickness of the tubing, v is the fluid velocity in pipeline, ρ is fluid

ensity, A is the pipeline cross-sectional area, C p is the fluid heat

apacity. R t represents the thermal conductivity of the unit pipe

ength, which is a conductivity characteristics and determined by

he pipe material and structure. 

From Eqs. (34) to (38) , to obtain the fluid temperature T e in

ipeline, the outside water temperature T out is needed. The most

ommon T–type distribution structure for vertical temperature is

dopted ( Romero et al., 1998 ). 

Once the inside fluid temperature Te k, t for the batch k is

btained, the Eq. (39) is listed to prevent hydrate formation. What

hould be highlighted is that T e min 
k 

and T e max 
k 

are given based

n complex hydrate mechanism analysis, which is out of scope

f this paper. Clearly, T e min 
k 

and T e max 
k 

need update when fluid

omposition varies. According to field experience, there is no need

o change in the planning horizon. 

 i,t T e 
min 
k ≤ T e k,t ≤ w i,t T e 

max 
k ∀ k ∈ K, t ∈ T , i ∈ I (39)

.6.2. Wax removal model 

At a given pressure, as the temperature drops, the wax will

rst precipitate out. So the wax should be cleaned at the same

ime with the prevention and treatment of hydrate. Eq. (40) de-

cribes the wax removing cost related with the wax removal

ycle Tl k , where τ denotes the cost coefficient. Assume that pipe

oughness is e k , and D k is half of the radius of the annular region

olume accounted for by uneven ups and downs, so the side

f well pipe capturing the quality of wax in unit time can be

epresented as following Eq. (41) . Then the volume is represented

s Eq. (42) where Gl denotes the density of wax. Wax deposit rate

s described in Eq. (43) that is used to calculate the wax removal

ycle as Eq. (44) . Eq. (45) signifies the constraint of wax deposit

hickness which should not interfere the production. 

 5 = f loor 

(
T T 

T l k 

)
· τ (40) 

 l i = 2 F d 
∑ 

k ∈ K 
x i 

e 2 
k 

+ D k e 
2 
k 

D 

2 
k 

+ 2 e 2 
k 

+ 2 D k e k 
∀ i ∈ I (41)

 l k = 

M l k / Gl ∀ k ∈ K (42)

 k = 

D k −
√ 

D 

2 
k 

− 4 V l k 
πL k 

2 

∀ k ∈ K (43)

 l k = 

h / 2 v k ∀ k ∈ K (44)

 < h ≤ h 

max (45) 

.7. Model of delivery 

Oil delivery should be no more than the demand as shown in

q. (49) . Therefore stock out state of oil is considered as Eq. (46) ,

n which the penalty factor θ is introduced. Production planning

s formulated in accordance with the well batch production which

an be described in Eqs. (47) –(48) . 

 6 = 

∑ 

t 

θ · ( d t − p r t ) (46) 

 t = 

∑ 

k 

d k,t ∀ t ∈ T (47)
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