
1Scientific RepoRtS |         (2020) 10:3904  | https://doi.org/10.1038/s41598-020-60698-9

www.nature.com/scientificreports

A comparative study among 
machine learning and numerical 
models for simulating groundwater 
dynamics in the Heihe River Basin, 
northwestern china
chong chen1,2*, Wei He1,3, Han Zhou1, Yaru Xue1,2 & Mingda Zhu1,2

Groundwater is unique resource for agriculture, domestic use, industry and environment in the Heihe 
River Basin, northwestern China. Numerical models are effective approaches to simulate and analyze 
the groundwater dynamics under changeable conditions and have been widely used all over the world. 
in this paper, the groundwater dynamics of the middle reaches of the Heihe River Basin was simulated 
using one numerical model and three machine learning algorithms (multi-layer perceptron (MLp); 
radial basis function network (RBf); support vector machine (SVM)). Historical groundwater levels and 
streamflow rates were used to calibrate/train and verify the different methods. The root mean square 
error and R2 were used to evaluate the accuracy of the simulation/training and verification results. 
The results showed that the accuracy of machine learning models was significantly better than that 
of numerical model in both stages. The SVM and RBF performed the best in training and verification 
stages, respectively. However, it should be noted that the generalization ability of numerical model is 
superior to the machine learning models because of the inclusion of physical mechanism. this study 
provides a feasible and accurate approach for simulating groundwater dynamics and a reference for 
model selection.

With the rapid development of information science and technology, groundwater models have been widely used 
in exploration of groundwater dynamics, quantitative assessment of groundwater resources1,2. A wide variety of 
models have been developed and applied for simulating groundwater dynamics which can be characterized as 
numerical (physical descriptive models) and empirical models. A major disadvantage of empirical models is the 
insufficient capability when confronting the dynamical behavior of the groundwater system changes. Many phys-
ically based numerical models for simulating groundwater system have been developed over the last 30 years3–8. 
Unfortunately, the numerical models have their own limitations such as requiring a large quantity of accurate data 
which can never be ascertained with absolute accuracy (e.g., the physical properties of aquifer). Furthermore, 
the computation resources can hardly satisfy the increasing refinement and complexity of numerical models. 
In recent years, machine learning methods (e.g., Artificial Neural Networks (ANNs)9, Support Vector Machine 
(SVM)10) have been used for forecasting in hydrologic research domains. Carlos et al. applied random forest algo-
rithm to spatially predict the water retention of soils and achieved good performance on predicting volumetric 
water contents11. Gradient boosting12 is a dominant learning method for the Classification and Regression Tree 
(CART). Gradient Boosting Decision Tree (GBDT) has been successfully applied in various prediction prob-
lems13. Kenda et al. presented a research applying data-driven modeling methods (Regression Trees, Random 
Forests and Gradient Boosting) to predict groundwater level changes with sufficiently well performance using 
data collected in Ljubljana aquifer14. A model based on machine learning for predicting timely streamflow data 
was developed and tested in Idaho and Washington in four diverse watersheds with highly accurate and reliable 
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predictions compared to the recorded data15. A method was proposed by combining Extreme Learning Machine 
and Quantum-Behaved Particle Swarm Optimization and assessed with daily runoff data of Xinfengjiang reser-
voir in China16. Worland et al. compared the ability of eight machine learning models and four baseline models to 
estimate the annual minimum 7-day mean streamflow in ungagged basins and concluded that machine learning 
methods can produce more accurate predictions in ungagged basins than baseline models17. Taormina et al. pre-
sented a research of applying Forward Neural Networks (FNNs) for long term simulations of groundwater levels 
in a coastal unconfined aquifer and suggested to regard FNNs as an alternative for numerical models18. The main 
advantage of this approach is that it does not require the complex nature of the underlying process of the physical 
systems as in numerical models.

Groundwater plays a significant role as sources of supply for domestic, industrial and agricultural purposes. 
Groundwater resources have been overexploited in many parts of the world19, especially in arid and semi-arid 
regions with highly variable precipitation and considerably high evapotranspiration. The depleted groundwater 
resources lead to environmental side effects including groundwater level declines, drying up of wells, increased 
pumping costs, land subsidence, decreased well yields, reduction of water in streams and lakes and water quality 
degradation20,21. Furthermore, population growth and climate extremes have significant influence on the qual-
ity and quantity of groundwater resources. Therefore, it is very important to sustainably manage groundwater 
resources in conjunction with surface water resources. Peng et al. analyzed the effects of water sources manage-
ment strategies on water balance in North China and found reduced agriculture water consumption and sus-
tained groundwater levels due to the decreased irrigation water use22. Sadeghi-Tabas et al. presented an attempt 
to link the multi-algorithm genetically adaptive search method (AMALGAM) with a numerical model to manage 
groundwater resources and found that “modeling - optimization - simulation” procedure was capable to obtain 
a set of optimal solutions23. For the effective management of groundwater resources, it is of great significance to 
simulate the groundwater dynamics accurately and reliably. Accurate assessments of groundwater levels allow 
water managers, engineers, and stakeholders to develop better strategies for groundwater management and bal-
ance the needs of urban, agricultural, industrial and other demands and analyze the benefits and costs of water 
conservation.

In this study, a physically based numerical model (MODFLOW, Modular Three-dimensional Finite-difference 
Ground-water Flow Model) and three machine learning methods were applied to simulate the groundwater 
dynamics of the middle reaches of Heihe River Basin, northwestern China. Collected data from 1986 to 2010 
were divided into calibration/training and verification periods. The same data were used to calibrate/train dif-
ferent models. The objectives of our work are: (1) to explore the effectiveness of machine learning methods on 
simulating groundwater dynamics in arid basins; (2) to explore the applicability of machine learning methods and 
numerical models by comparing their results. The remainder of this paper is organized as follows: Section 2 pre-
sents methodologies for simulating the groundwater dynamics. Section 3 describes the study sites, the involved 
data and the processing of the data. The model structures, settings, hyperparameters and model performance 
criteria are presented in Section 4. Section 5 and 6 present the results, discussions and conclusions.

Methods
Multi-layer perceptron. ANNs are mathematical structure inspired by the biological neural networks pro-
posed by McCulloch24. Multi-layer perceptron (MLP) is a class of feedforward ANN with input/output layers 
and several hidden layers. Nonlinear activation functions are used in the neurons to extract, learn and remember 
the nonlinear features and sub features from the inputs. Backpropagation is a family of methods which is always 
used to update the parameters in the ANN by calculating the gradient of a loss function with respect to all the 

Figure 1. Schematic diagram demonstrating the architecture of backpropagation neural network. xi, hj and 
yk represent the nodal values in the input layer, hidden layer and output layer, respectively; n, N and m are the 
number of nodes in the input layer, hidden layer and output layer; wji is the weight connecting the input xi and 
the jth neuron in the hidden layer; wkj is the weight connecting the jth neuron in the hidden layer (hj) and the 
output yk; bj and bk are the biases in the hidden layer and output layer; f1 and f2 are the activation functions in the 
hidden layer and the output layer.
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Where Kx, Ky and Kz are values of hydraulic conductivity along the x, y, and z coordinate axes (L•T−1); h is the 
hydraulic head (L) which can be converted to groundwater level; W represents source and/or sink term of water 
(1/T) with W<0.0 for flowing out of the groundwater system, and W>0.0 for flowing into the system; Ss denotes 
the specific storage of the aquifer (1/L); t is time (T); h0 is the initial hydraulic head (L); Ω denotes the study area; 
n is normal direction of a hydraulic boundary; Г1 denotes the top boundary condition of the study area; Г1 and Г2 
are the Dirichlet boundary condition and Neumann boundary condition; and q(x, y, z, t) is the normal discharge 
per unit width (L2(d•L)−1). Solution of the groundwater flow equation is achieved by finite-difference method in 
which the groundwater flow system and simulation time are discretized into grids and stress periods, respectively. 
Each stress period is a period of simulation within which specified stress data are constant.

Study sites and data descriptions
Study sites. The Heihe River Basin which located in the middle of Qilian Mountain is the second largest 
inland river basin in the northwest of China. The basin extends ~821 km with an area of ~14 × 104 km2. The mid-
dle reaches of the Heihe River Basin (38 °38′N-39°53′, 98 °53′E-100°44′E; Fig. 2) with an area of ~9016 km2 was 
selected as the study area. The groundwater resource in this area has been overexploited for agricultural, indus-
trial, and domestic use. The water system of the Heihe River Basin is composed of 35 independent rivers among 
which most of the mountainous rivers dry up because of irrigation water withdrawal and recharging to the aquifer 
in front of the mountains. The major rivers in the study area are the mainstream of the Heihe River and the Liyuan 
River. The Heihe River flows in the study area through the Yingluo Gorge hydrologic station and flows out of the 
study area through the Zhengyi Gorge hydrologic station (Fig. 2).

Data. Various kinds of data including Digital Elevation Model (DEM), land use data, groundwater pumping 
yields, groundwater levels, streamflow rates, etc., were used in this study. All the available data were used to 
construct the numerical model; however, only time-variant data (i.e., streamflow rates, groundwater pumping 
rates, agricultural irrigation, and groundwater levels) were used to establish the machine learning models. Land 
use data were obtained through visual interpretation of Landsat TM/ETM+ images in 198634, 200035 and 200736. 
Historical data of groundwater levels from 42 monitoring wells (light blue dots in Fig. 2) were collected by the 
Gansu Provincial Bureau of Hydrology and were used in the study. The irrigation data were obtained from annual 
water resource management reports published by the Zhangye Municipal Bureau of Water Conservancy. Annual 
runoff at Yingluo, Gaoya and Zhengyi hydrologic stations (yellow triangle in Fig. 2) were collected from the 
Gansu Provincial Bureau of Hydrology. The data of groundwater exploitation during the modeling period were 

Figure 2. Map of the middle reaches of the Heihe River Basin. (Note: the map was generated using ESRI’s 
ArcGIS 10.2 (http://desktop.arcgis.com/en/arcmap/); the satellite imagery was provided by Cold and Arid 
Regions Sciences Data Center at Lanzhou (http://westdc.westgis.ac.cn).
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obtained from China Census for Water. All the above-mentioned data were obtained from the “China Western 
Environment and Ecology Science Data Center” (http://westdc.westgis.ac.cn).

Data processing. Elevation, irrigation, streamflow rates and pumping yields were processed to drive 
the numerical model. The elevation of the surface and bottom of the study area was obtained from the DEM 
which provided by the CGIAR-CSI GeoPortal. The resolution of the elevation was processed to 1 km from 90 m. 
Time-variant data were transformed into monthly stress periods (time interval) from January 1986 to December 
2010. The calibration and verification periods were chosen as 1986–2008 and 2009–2010 because of the availabil-
ity of relatively complete historical records. The main channels, tributaries and the divisions of the Heihe River 
were implemented using the Streamflow-Routing (STR) package37. The streamflow rates measured at the Yingluo 
Gorge hydraulic station and Liyuan River were assigned to the STR package to simulate the rivers. Basic param-
eters (Stream state, top elevation of the streambed, bottom elevation of the streambed, width of the stream chan-
nel) were derived from38. The agricultural irrigation was implemented using Recharge (RCH) package3 which 
combined the surface water and groundwater irrigation. The groundwater exploitation was simulated using the 
Well package3 by assigning pumping rates which were calculated from the extraction records.

Only time-variant data including streamflow rates, groundwater pumping rates, agricultural irrigation, and 
groundwater levels were used to construct the machine learning models. The time-series dataset was divided 
into two parts in accordance with the two stages in the numerical model building process: training and testing. 
The training and testing periods were 1986–2008 and 2009–2010, respectively. The input and output data were 
summarized in Table 1 from which we could find existence of different units and ranges which would have influ-
ence on the results. Therefore, a normalization procedure was conducted for the machine learning methods to 
nondimensionalize the data to eliminate the effects of dimension as shown in Eq. (10). The data were normalized 
to the range of (−1, 1) after the procedure.
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Where x is the original data; x* represents the data after nondimensionalizing; xmin and xmax are the minimum and 
maximum value of x; ymin and ymax are the lower and upper bound of the normalized data.

Model development 
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Development of machine learning methods. All the machine learning methods were carried out in 
MATLAB 2017a environment running on a Intel Core i5, 2.5 GHZ CPU with DDR3L, 1600MHz RAM. The 
number of input layer neurons and output layer neurons were set based on the dimension of the input data and 
output data. The dimensions of input data include pumping rates and recharge rates of 21 irrigation districts (light 
red polygon in Fig. 2) and streamflow rates of two rivers (blue polyline in Fig. 2). The dimensions of the output 
data include groundwater levels observed at 42 boreholes (light blue dots in Fig. 2) and streamflow rates from 
two hydrologic stations (yellow triangle in Fig. 2). Therefore, the number of neurons in the input layer and output 
layer were both 44. As for the MLP, the hyperbolic tangent sigmoid transfer function and linear transfer function 
were applied in the neurons of the hidden layer and output layer, respectively. The number of hidden neurons 
was identified by trial and error procedure which started with two hidden neurons initially and increased to 10 
with a step size of 1 at each trial. For each set of hidden neurons, the network was trained to minimize the Mean 
Square Error (MSE) at the output layer. Levenberg-Marquardt algorithm was used to update the values of weights 
and biases. The training was stopped when there was no significant improvement in the performance. The parsi-
monious structure that resulted in minimum error and maximum efficiency during training was selected as the 
final form of MLP. As for the RBF network, the Gaussian radial basis function and linear transfer function were 
applied in the neurons of the hidden layer and output layer, respectively. The number of hidden neurons was also 
identified by trial and error procedure which started with two hidden neurons and increased to 70. For each set of 
hidden neurons, the worst performing vector is added to the hidden layer as a Gaussian transfer function center 
to improve performance. Then the linear transfer function in the output layer was readjusted to minimize the 
MSE. As for the SVM, Gaussian function (also called radial basis function) was used as kernel function to com-
pute the Gram matrix. Sequential minimal optimization (SMO)44 was used to solve Eqs. (3) and (4). The output 
of SVM regression predictor was a one-dimensional vector. Therefore, 44 SVM regression models were trained 
using all 44-input data for each output vector. After training the machine learning methods, the machine learning 
models (MLP model, RBF model and SVM model) were generated for the study area.

performance criteria. As recommended by45, the Root Mean Square Error (RMSE) and Coefficient of 
Determination (R2) were used as objective functions to assess the groundwater level simulations through the cali-
bration (training), verification (testing) stages (as shown in Eqs. (11) and (12)). The RMSE measures the average 
magnitude of the error between model simulations (M) and observations (O). As shown in Eq. (13), the errors are 
squared before averaged, large errors take a relatively high weight. Therefore, RMSE is useful when large errors 
are undesirable and R2 measures the predictive ability of models.
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Where N represents the total number of observations; O is the average of observations.
In the development of data-driven models (e.g., MLP, RBF, SVM), the most important issue is to guarantee the 

generalization ability of the models. Therefore, the generalization ability (GA) is evaluated as follows:46

Figure 3. The numerical discretization and boundary conditions for the middle reaches of the Heihe River 
Basin.
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GA RMSE in prediction stage
RMSE in training stage (13)

=

The GA values are unity if the models simulate the groundwater system perfectly. However, if the models are 
over calibrated/trained, the GA
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period. The comparison between observed and simulated groundwater levels and streamflow rates are shown in 
Fig. 7(a,b), respectively. The RMSE value and R2 value for the groundwater levels are 5.84 m and 0.51, respectively. 
The calculated streamflow rates of Gaoya and Zhengyi Gorge hydrologic stations shown in Fig. 7(b) match the 
observed streamflow rates considerably. Inspection of the comparison between calculated and observed ground-
water levels and streamflow rates during the calibration and verification periods elucidates that the assumptions 
of boundary conditions made for the study area are appropriate and the establishment of the groundwater model 
for the middle reaches of the Heihe River Basin is feasible.

Figure 8 shows the comparison the observed and simulated groundwater levels for machine learning models 
in verification period. The models trained in the training stage were used to predict by applying new input data. 
The RMSE and R2 values were calculated using the model outputs and new observations. The RMSE and R2 values 
are 1.69 m and 0.66, 1.12 m and 0.71, 1.71 m and 0.65 for MLP, RBF, and SVM models, respectively. The stream-
flow rates predicted by machine learning models are shown in Fig. 9. The RMSE value and R2 value for MLP, RBF, 
and SVM models calculated from streamflow rates at Gaoya and Zhengyi Gorge hydrologic stations are 1.69 × 106 
m3/day and 0.54, 1.21 × 106 m3/day and 0.79, 1.17 × 106 m3/day and 0.83. In the verification period, the model 
based on RBF network performs the best. This may due to the local transfer function and relatively large number 
of neurons in the hidden layer. The ANN methods (MLP and RBF network) are always based on an assumption 
of unlimited samples which can never be satisfied. The origin of SVM is based on limited samples and follows the 
structural risk minimization which adequately balanced the accuracy and generalization ability. SVM maps the 
input vectors into high-dimensional feature space by support vector and manage the problem following the linear 
optimization algorithm which avoids local minimum and Curse of Dimensionality.

Figure 5. Comparison of the observed and simulated groundwater level for (a) MLP model; (b) RBF model; 
and (c) SVM model. Blue dots refer to the scatter plot of the observed and simulated groundwater level, the red 
dashed line denotes a perfect match where “simulated groundwater level = observed groundwater level”.

Figure 6. Comparison of the observed and simulated streamflow rates at Gaoya (upper) and Zhengyi (lower) 
Gorge hydraulic stations for (a) MLP model; (b) RBF model; and (c) SVM model. The blue curve refers to the 
simulated streamflow rates, the red dashed curve denotes the observed streamflow rates.
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Generalization ability. The generalization ability was evaluated by Eq. (13) which indicates that GA values 
are greater if the model concentrates on learning the given training data rather than a more general system and 
that the higher the index values are, the weaker the generalization ability becomes. GA values (Table 2) calculated 
from groundwater level for MLP, RBF, and SVM models are 1.7, 1.3, and 2.1 which implies that the generalization 
ability of the RBF model is superior to that of MLP and SVM models. GA values calculated from streamflow rates 
for MLP, RBF, and SVM models are 1.55, 1.04, and 1.00. The overall values of GA which averages the two values of 
indices are 1.63, 1.18, and 1.53 which indicates that the generalization ability of RBF model is the lowest. Similar 
to the machine learning models, the generalization ability of numerical model was also evaluated by calculating 
GA values. The GA values calculated from groundwater level and streamflow rates for numerical model are 1.04 
and 1.11 with the average of 1.08.

comparisons. The comparison of numerical model and machine learning models in the calibration/training 
stage was conducted and shown in Table 3. RMSE and R2 values were used to evaluate the accuracy of the sim-
ulated groundwater levels and streamflow rates compared to the observations. In this study, the RMSE and R2 
values imply that the accuracy of machine learning models is better than that of numerical model for the given 
data. Furthermore, the time elapsed in constructing the model is divided into two parts which are calibration/
training time and computation time. The calibration of numerical model usually costs the hydrologist months to 
balance lots of aspects, processes and parameters. However, the machine learning methods only cost experts’ days 
to determine the hyperparameters after data preparation. This is also the main reason why the calibration of the 
models is described in detail. Among the machine learning methods, the reproduction capability of groundwater 
levels and streamflow rates of RBF network and SVM is superior to that of MLP which may be caused by different 
transfer functions, network structures, and minimizing methods. The comparison between numerical model 
and machine learning methods in the verification/prediction stage is shown in Table 4. The performance of RBF 
model is better than that of numerical model, MLP model, and SVM model which indicates that RBF network is 
applicable to simulate groundwater systems. The comparison of generalization ability between different models 
is shown in Fig. 10. The generalization ability of numerical model calculated from groundwater levels is better 
than those of machine learning methods. The generalization ability of SVM model calculated from streamflow 
rates performs the best among the all the models. It is noted that the overall generalization ability of the numerical 
model is superior to those of machine learning methods with lower generalization ability index value. The rela-
tively less difference of generalization ability calculated from groundwater levels and streamflow rates indicates 
the stability of the numerical models. On the one hand, the RMSE value in calibration stage of numerical model 
which act as denominator in Eq. (13) is relatively large. On the other hand, the dynamics simulated by numerical 
model are based on the groundwater flow equation (Eq. (5)) with the same boundary conditions and parameters 
which dominates the groundwater movements. On the contrary, the machine learning methods are mappings 
between the inputs and outputs based on statistics without deduction of physical process. In the machine learning 
methods, the RBF model performs the best in generalization ability which is also close to the numerical model.

conclusions
In this paper, the groundwater dynamics in the middle reaches of Heihe River Basin were simulated by numerical 
models and machine learning methods. Historical data of groundwater levels and streamflow rates were used to 
calibrate/train and verify/test the models. The RMSE and R2 values were used to evaluate the simulated results 
of the constructed model which indicated that the calibrated model could considerably reproduce the trend 
and values of historical observations. Furthermore, a comparison was conducted to discover pros and cons of 
different models. The results showed that the performances of machine learning models on simulating historical 
data was superior to those of numerical model with RBF model performed the best. The computation cost of 

Figure 7. (a) Comparison of the observed and simulated groundwater level in verification period. Blue dots 
refer to the scatter plot of the observed and simulated groundwater level, the red dashed line denotes a perfect 
match where “simulated groundwater level = observed groundwater level”; (b) Comparison of the observed 
and simulated streamflow rates at Gaoya (upper) and Zhengyi (lower) Gorge hydraulic stations in verification 
period.
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Figure 8. Comparison of the observed and simulated groundwater levels for (a) MLP model; (b) RBF model; 
(c) SVM model. Blue dots refer to the scatter plot of the observed and simulated groundwater level, the red 
dashed line denotes a perfect match where “simulated groundwater level = observed groundwater level”.

Figure 9. Comparison of the observed and simulated streamflow rates at Gaoya (upper) and Zhengyi Gorge 
(lower) hydraulic stations for (a) MLP model; (b) RBF model; (c) SVM model. The blue curve refers to the 
simulated streamflow rates, the red dashed curve denotes the observed streamflow rates.

Numerical 
model

MLP 
model

RBF 
model

SVM 
model

Groundwater level 1.04 1.70 1.33 2.06

Streamflow rates 1.11 1.55 1.04 1.00

Overall 1.08 1.63 1.18 1.53

Table 2. Comparison of generalization ability.

Numerical 
model MLP model RBF model SVM model

RMSE
Groundwater level (m) 5.61 0.99 0.84 0.83

Streamflow rates (m3) 1.76 × 106 1.09 × 106 1.16 × 106 1.16 × 106

R2
Groundwater level 0.52 0.71 0.75 0.76

Streamflow rates 0.51 0.66 0.66 0.66

Time
Calibration months days days days

Computation 1898 s 716.9 s 4.2 s 1.0 s

Table 3. Comparison in the calibration/training stage.
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machine learning models in training and prediction stages were much less than those of numerical model in 
calibration and verification stages. However, the generalization ability of the numerical model was better than 
that of machine learning methods because of the physical based mechanism. Therefore, machine learning models 
are applicable to the scenarios which require numerous executions without considering the physical mecha-
nisms (e.g., real-time models, sensitivity/uncertainty analysis, and optimizations). The developed models and 
the results of this study may be useful for the accurate groundwater management, decision making, and model 
selection. Future research should be focused on exploring applicability of deep learning methods or tree-based 
machine learning algorithms in hydrologic field and application of the developed models to manage groundwater 
resources.

Received: 22 November 2018; Accepted: 7 February 2020;
Published: xx xx xxxx

References
 1. Loucks, D. P., Kindler, J. & Fedra, K. Interactive Water Resources Modeling and Model Use: An Overview. Water Resour. Res. 21, 

95–102, https://doi.org/10.1029/WR021i002p00095 (1985).
 2. Singh, A. Groundwater resources management through the applications of simulation modeling: A review. ScTEn 499, 414–423, 

https://doi.org/10.1016/j.scitotenv.2014.05.048 (2014).
 3. Harbaugh, A. W. MODFLOW-2005: The US Geological Survey modular ground-water model–The ground-water flow process. 

Report No. 6-A16, (U.S. Geol. Surv., Tech. Methods 2005).
 4. Markstrom, S. L., Niswonger, R. G., Regan, R. S., Prudic, D. E. & Barlow, P. M. GSFLOW - Coupled Ground-Water and Surface-

Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water 
Flow Model (MODFLOW-2005). Report No. 6-D1, 240 2008).

 5. Neitsch, S. L., Arnold, J. G., Kiniry, J. R. & Williams, J. R. Soil and water assessment tool theoretical documentation version 2009. 
(Texas Water Resources Institute 2011).

 6. Storm, B. & Høgh Jensen, K. Experience with field testings of SHE on research catchments. Hydrol. Res. 15, 283–294, https://doi.
org/10.2166/nh.1984.0025 (1984).

 7. Diersch, H.-J. FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media. (Springer-Verlag 
Berlin Heidelberg 2014).

 8. Boogaard, H. L., Diepen, C. A. v., Rotter, R. P., Cabrera, J. M. C. A. & Laar, H. H. v. WOFOST 7.1; user’s guide for the WOFOST 7.1 
crop growth simulation model and WOFOST Control Center 1.5. Report No. 0927-4499, (SC-DLO, Wageningen 1998).

 9. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature. 521, 436–444, https://doi.org/10.1038/nature14539 (2015).
 10. Vapnik, V. The Nature of Statistical Learning Theory. (Springer science & business media 2013).
 11. Guio Blanco, C. M., Brito Gomez, V. M., Crespo, P. & Ließ, M. Spatial prediction of soil water retention in a Páramo landscape: 

Methodological insight into machine learning using random forest. Geoderma. 316, 100–114, https://doi.org/10.1016/j.
geoderma.2017.12.002 (2018).

 12. Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232, https://doi.org/10.1214/
aos/1013203451 (2001).

Numerical 
model MLP model RBF model SVM model

RMSE
Groundwater level (m) 5.84 1.69 1.12 1.71

Streamflow rates (m3) 2.05 × 106 1.69 × 106 1.21 × 106 1.17 × 106

R2

Groundwater level 0.51 0.66 0.71 0.65

Streamflow rates 0.50 0.54 0.79 0.83

Time (s) 30 0.07 0.06 0.10

Table 4. Comparison in the verification stage.

Figure 10. The comparison of generalization ability between different models.

https://doi.org/10.1038/s41598-020-60698-9
https://doi.org/10.1029/WR021i002p00095
https://doi.org/10.1016/j.scitotenv.2014.05.048
https://doi.org/10.2166/nh.1984.0025
https://doi.org/10.2166/nh.1984.0025
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.geoderma.2017.12.002
https://doi.org/10.1016/j.geoderma.2017.12.002
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451


1 2Scientific RepoRtS |         (2020) 10:3904  | https://doi.org/10.1038/s41598-020-60698-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

 13. Fienen, M. N., Nolan, B. T., Kauffman, L. J. & Feinstein, D. T. Metamodeling for Groundwater Age Forecasting in the Lake Michigan 
Basin. Water Resources Research 54, 4750–4766, https://doi.org/10.1029/2017wr022387 (2018).

 14. Kenda, K. et al. Groundwater modeling with machine learning techniques: Ljubljana polje Aquifer. Proceedings 2, 697, https://doi.
org/10.3390/proceedings2110697 (2018).

 15. Petty, T. R. & Dhingra, P. Streamflow hydrology estimate using machine learning (SHEM). J. Am. Water Resour. Assoc. 54, 55–68, 
https://doi.org/10.1111/1752-1688.12555 (2018).

 16. Niu, W., Feng, Z., Cheng, C. & Zhou, J. Forecasting daily runoff by extreme learning machine based on quantum-behaved particle 
swarm optimization. J. Hydrol. Eng. 23, 1–10, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001625 (2018).

 17. Worland, S. C., Farmer, W. H. & Kiang, J. E. Improving predictions of hydrological low-flow indices in ungaged basins using 
machine learning. Environ. Modell. Softw. 101, 169–182, https://doi.org/10.1016/j.envsoft.2017.12.021 (2018).

 18. Taormina, R., Chau, K.-W. & Sethi, R. Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system 
of the Venice lagoon. Eng. Appl. of Artif. Intel. 25, 1670–1676, https://doi.org/10.1016/j.engappai.2012.02.009 (2012).

 19. 

https://doi.org/10.1038/s41598-020-60698-9
https://doi.org/10.1029/2017wr022387
https://doi.org/10.3390/proceedings2110697
https://doi.org/10.3390/proceedings2110697
https://doi.org/10.1111/1752-1688.12555
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001625
https://doi.org/10.1016/j.envsoft.2017.12.021
https://doi.org/10.1016/j.engappai.2012.02.009
https://doi.org/10.1007/s10040-004-0411-8
https://doi.org/10.1007/s10040-004-0411-8
https://doi.org/10.1016/j.jher.2016.08.001
https://doi.org/10.2166/hydro.2016.006
https://doi.org/10.1007/bf02478259
https://doi.org/10.1007/bf02478259
https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(115)
https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(115)
https://doi.org/10.1016/S0893-6080(01)00027-2
https://doi.org/10.1109/72.870050
https://doi.org/10.1002/hyp.7952
https://doi.org/10.1002/hyp.6497
https://doi.org/10.1007/s00254-006-0620-7
https://doi.org/10.3969/j.issn.1000-0240.2001.04.007
https://doi.org/10.3969/j.issn.1000-0240.2001.04.007
https://doi.org/10.13031/2013.23153
https://doi.org/10.1016/j.jhydrol.2010.11.002
http://westdc.westgis.ac.cn


13Scientific RepoRtS |         (2020) 10:3904  | https://doi.org/10.1038/s41598-020-60698-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to C.C.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-60698-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe River Basi ...
	Methods
	Multi-layer perceptron. 
	Radial basis function network. 
	Support vector machine. 
	Numerical model. 

	Study sites and data descriptions
	Study sites. 
	Data. 
	Data processing. 

	Model development
	Numerical model settings. 
	Development of machine learning methods. 
	Performance criteria. 

	Results and discussions
	Model calibration/Training. 
	Verification. 
	Generalization ability. 
	Comparisons. 

	Conclusions
	Acknowledgements
	Figure 1 Schematic diagram demonstrating the architecture of backpropagation neural network.
	Figure 2 Map of the middle reaches of the Heihe River Basin.
	Figure 3 The numerical discretization and boundary conditions for the middle reaches of the Heihe River Basin.
	Figure 4 (a) Comparison of the observed and simulated groundwater level in calibration period.
	Figure 5 Comparison of the observed and simulated groundwater level for (a) MLP model (b) RBF model and (c) SVM model.
	Figure 6 Comparison of the observed and simulated streamflow rates at Gaoya (upper) and Zhengyi (lower) Gorge hydraulic stations for (a) MLP model (b) RBF model and (c) SVM model.
	Figure 7 (a) Comparison of the observed and simulated groundwater level in verification period.
	Figure 8 Comparison of the observed and simulated groundwater levels for (a) MLP model (b) RBF model (c) SVM model.
	Figure 9 Comparison of the observed and simulated streamflow rates at Gaoya (upper) and Zhengyi Gorge (lower) hydraulic stations for (a) MLP model (b) RBF model (c) SVM model.
	Figure 10 The comparison of generalization ability between different models.
	Table 1 Input and output data for machine learning models.
	Table 2 Comparison of generalization ability.
	Table 3 Comparison in the calibration/training stage.
	Table 4 Comparison in the verification stage.




