
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 1

An Adaptive-Rank Singular Spectrum Analysis for
Simultaneous-Source Data Separation
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Abstract— Simultaneous-source exploration improves effi-
ciency and reduces the cost when acquiring seismic data. How-
ever, the adjacent shot records interfere with each other, and
an efficient deblending way is needed. The traditional truncated
singular spectrum analysis (SSA) algorithm is employed in the
local window to predict coherent events. After all the local
events are predicted, the whole dither noise could be estimated
completely. Traditional processing in the time domain complicates
deblending. In this letter, a global-frequency SSA is proposed to
predict dither noise with a simple iteration scheme. This method
will lead to an increase in the rank in the Hankel matrix. Thus,
a trigonometric function is introduced to adaptively determine
the rank instead of the rank-truncated method. The experiments
on actual seismic data show that the proposed method not
only improves the deblending performance but also enjoys high
efficiency.

Index Terms— Adaptive rank-reduction (RR), simultaneous-
source separation, singular spectrum analysis (SSA), trigonomet-
ric function.

I. INTRODUCTION

IN SEISMIC exploration, the time interval of source exci-
tation is usually set to long enough to prevent crosstalk

from adjacent seismic sources, which results in low acquisition
efficiency, especially in marine exploration. The simultaneous-
source seismic exploration method permits records from dif-
ferent sources to overlap in the time domain so that the
acquisition efficiency can be significantly improved [1]–[5].
However, it is necessary to separate the simultaneous-source
record that is blended in the time domain for the subsequently
traditional process.

Simultaneous-source separation is generally posed as an
inversion problem to estimate the coherent signals and then
subtract dither noise from the blended gathers. Because of
the ill-posed nature of the blending problem, a regularization
term is often introduced in the coherent events’ estimation
procedure. Sparsity promotion and low-rank promotion are the
currently often-used regularization terms. Mahdad et al. [6]
introduced the f − k filter to regularize the coherent events.
Zu et al. [7] proposed a coherency-pass shaping operator to
separate simultaneous source data, but it may leave residual
noise when there is strong blending interference. Chen [8] used
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the seislet-domain shaping regularization to map the coherent
events to the more admissible model. Gan et al. [9] used
seislet frames with two corresponding local dips to sparsify
each signal component. An amplitude-preserving high-order
Radon transform was incorporated with a regularization inver-
sion method to achieve AVO-preserving deblending perfor-
mance [10].

No matter for the seislet transform or other kinds, these
sparsity promotions are based on fixed basis functions, and
their sparsity is depended on the similarity between signal
and basis functions. Based on the linear event predictability, a
low-rank property is demonstrated in the singular spectrum.
Its basis functions are driven by the data, which is more
conducive to data sparsity. Singular spectrum analysis (SSA)
has been widely used in denoising and data reconstruction
[11], [12]. Cheng and Sacchi [13] introduced SSA to separate
the simultaneous-source data in the local window. The events
in the small local window could be regarded as linear with
low-rank properties. In the Hankel matrix, the rank is equal to
the number of events, which is difficult to determine in field
data. Cheng and Sacchi [13] calculated the initial rank and step
size through many simulations. Similar rank-reduction (RR)
strategy deployed in the data reconstruction using SSA [14].
A simple rank increasing (RI) was proposed by Xue et al. [15],
which sets the initial reconstructed rank to 1 and increases the
rank step by step with iterations. This algorithm is simple but
converges slowly.

The local scheme is another strategy in the SSA algorithm.
In the small local t − x window, not only coherent events
but also blending noise from another window are included.
Therefore, it is necessary to estimate all the window coherent
data before noise prediction, which brings algorithm complex-
ity. In this letter, we propose to divide the window only in
the spatial domain to simplify the dither noise prediction-
subtraction scheme. A trigonometric function is also intro-
duced to adaptively estimate the Hankel rank.

II. METHOD

A. Simultaneous-Source Acquisition Model

Here, the blending model is reviewed in brief. Taking two-
sources acquisition as example, the two sources are fired
alternatively and pseudosynchronously. The observed blending
data Dobs with two shots DD
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Fig. 1. Deblending encoder and decoder diagram.

where � is the relative delay matrix

� = diag(1, 1, 1 . . . , 1)N × exp(−iωδtn) (2)

where ω is the angular frequency, and δtn is the relative delay
time of the nth shot. The coherent D1 is superposed by the
dithered gather D2.

Introducing the adjoint dithering code �H , we obtained the
pseudodeblended data

D p =
�

Dobs

Dobs�H

�
=

�
I �

�H I

��
D1

D2

�
= D + DT (3)

where

D =
�

D1

D2

�

is the expected deblended data and

T =
�

0 �
�H 0

�
.

Most of deblending processing are carried out in the pseudode-
blending domain. From formula (3), an easy iterative deblend-
ing scheme can be achieved. The shaping operator S are
embedded to attenuate the crosstalk noise

Dn+1 = D p − T [S(Dn)]. (4)

To clearly explain the relationship between pseudodeblending
and deblending data, the pseudodeblending is defined as an
encoder and deblending as a decoder, and their relations are
plotted in Fig. 1. The decoder is the inverse of encoder.
Without shaping operator, the decoder will converge very
slowly because spectrum radium of T is close to 1. The
shaping operator is introduced to speed up the deblending.

B. Deblending Scheme: Rank-Reduction in the Frequency
Domain

The SSA operator has been used in denoising, data recon-
struction. Its detail algorithm refer to [13]. Here, we talk about
the deblending scheme.

Generally, SSA is used to estimate the coherent events; then,
the blending noises predicted with dither code � are subtracted
from observed data, and this procedure is called the prediction-
subtraction scheme. To benefit from the linear prediction of
events and low-rank property, the seismic profile is divided
into many local windows in the t − x domain, as shown in
Fig. 2(a). The formula (2) tells us that the coherent dither noise

Fig. 2. Local window scheme. (a) Local window strategy for the RR method.
(b) Local window strategy for the proposed method.Fig. 3. Disadvantage of localt −

x

window prediction. (a) Blended data.

(b) D ata reconstructed from the yello w box. (c) N oise predicted by recon- structingdata. (d) N oise in yellow box.is upor down alongthe trace,whichmeans thatthere are two seismicreflectionrecords ineachtrace. Thus,inalocal t −

x
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Algorithm 1

Inputs: The blended data Dobs , dither code � and error threshold ε

Initialize: The pseudodeblending data :D p =
�

Dobs

Dobs�H

�

divide the D p into a set of local window data
�

Di
ω, i = 1, 2, . . . , n

�
Prediction and subtraction iteration:

1. For each local window data Di
ω in the time domain

A Transform them to frequency domain

B For each frequency, execute SSA algorithm.

C Transform it to time domain and get the estimation D̂i
ω of Di

ω

⎫⎪⎬
⎪⎭

Many FFT and its
inverse are involved here

2. Patch the D̂i
ω into a whole profile and get the current coherent estimation D̂

3. Transform D̂ into dither noise with operator T and subtract from D p

4. If


D̂ + D̂T − D p



 ≤ ε, end, otherwise return 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Once iteration

included, no other window crosstalk introduced. The coherent
prediction and dither noise subtraction can be all accomplished
in this window and avoid the transform between the time
and frequency domains. The deblending scheme becomes as
simple as in Algorithm 2. It is clear that this scheme is more
efficient than Algorithm 1.

C. Adaptive Rank Determination Rule
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Algorithm 2

Inputs: The blended data Dobs , dither code � and error threshold ε

Initialize: The pseudodeblending data :D p =
�

Dobs

Dobs�H

�
, transform the D p into frequency D f

Divide the D f into a set of local window data
�

Di
f ω, i = 1, 2, . . . m

�
, here m is much less than window number

n in the algorithm 1

Prediction and subtraction iteration:
1. For each local window data Di

f ω

A For each frequency, execute SSA algorithm and get the estimation D̂i
f ω

B Transform D̂i
f ω into dither noise with operator T , subtract from Di

f and

get the current deblended data D̂ f

⎫⎪⎬
⎪⎭Once iteration

2. if


D̂ f + D̂ f T − D f



 ≤ ε, go to 3, otherwise return 1

3. Transform D̂ f into time domain and get the deblending data D̂

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Only one time
FFT and its inverse

Fig. 6. Deblended compa
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Fig.9.Evaluatingtheresultsofspectrumconvergence.(a)Spectrumofdata.(b)Errorscomparedwithcleandata. F i g . 1 0 2 E v a l u a t i n g e i g e n v e c t o r c o n v e r g e n c e o f a s i n g l e f r e q u e n c y . ( a ) E i g e n v e c t o r s p e c t r u m a t 2 0 H z 2 ( b ) E r r o r s c o m p a r e d w i t h c l e a n d a t a .


