
Information Sciences 547 (2021) 553–567
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Enhancing gene expression programming based on space
partition and jump for symbolic regression
https://doi.org/10.1016/j.ins.2020.08.061
0020-0255/� 2020 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail address: luqiang@cup.edu.cn (Q. Lu).
Qiang Lu a,⇑, Shuo Zhou a, Fan Tao a, Jake Luo b, Zhiguang Wang a

aBeijing Key Laboratory of Petroleum Data Mining, China University of Petroleum-Beijing, Beijing, China
bDepartment of Health Sciences and Administration, University of Wisconsin Milwaukee, Milwaukee, WI, United States
a r t i c l e i n f o

Article history:
Received 23 April 2019
Received in revised form 15 August 2020
Accepted 18 August 2020
Available online 28 August 2020

Keywords:
Symbolic regression
Gene expression programming
Genetic programming
Multi-armed bandit
Evolutionary computation
a b s t r a c t

When solving a symbolic regression problem, the gene expression programming (GEP)
algorithm could fall into a premature convergence which terminates the optimization pro-
cess too early, and may only reach a poor local optimum. To address the premature conver-
gence problem of GEP, we propose a novel algorithm named SPJ-GEP, which can maintain
the GEP population diversity and improve the accuracy of the GEP search by allowing the
population to jump efficiently between segmented subspaces. SPJ-GEP first divides the
space of mathematical expressions into k subspaces that are mutually exclusive. It then
creates a subspace selection method that combines the multi-armed bandit and the �-
greedy strategy to choose a jump subspace. In this way, the analysis is made on the pop-
ulation diversity and the range of the number of subspaces. The analysis results show that
SPJ-GEP does not significantly increase the computational complexity of time and space
than classical GEP methods. Besides, an evaluation is conducted on a set of standard SR
benchmarks. The evaluation results show that the proposed SPJ-GEP keeps a higher popu-
lation diversity and has an enhanced accuracy compared with three baseline GEP methods.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

Symbolic regression (SR) is a regression analysis that discovers a model that best fits a given dataset in the space of math-
ematical expressions. Unlike machine learning or neural network regression analysis that focuses on optimizing parameters
in a predefined model, SR aims to find appropriate models and their parameters at the same time. Genetic programming (GP)
[1] is a commonly used approach in SR to search for the optimal model. GP evolves to change individual structures of the
population to generate fitted models or computer programs by the three key genetic algorithm (GA) operations: selection,
crossover, and mutation. To represent a mathematical expression, classical GPs usually describe individual encodings in trees
[1–5]. Graph-based GPs, such as graph encoding GP [6,7] and Cartesian genetic programming [8,9], encode individuals into
graphs. Linear GPs, such as gene expression programming (GEP) [10–12] and linear GP [13], convert individuals into linear
strings.

Since these GPs all utilize GA operations, like genetic algorithms(GA), these GPs are prone to premature convergence [14].
From the perspective of exploration and exploitation [15], the reason for premature convergence is that individuals of a
population are similar, hence, they tend to exploit their neighborhood instead of new regions. Therefore, maintaining the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2020.08.061&domain=pdf
https://doi.org/10.1016/j.ins.2020.08.061
mailto:luqiang@cup.edu.cn
https://doi.org/10.1016/j.ins.2020.08.061
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


554 Q. Lu et al. / Information Sciences 547 (2021) 553–567
population diversity is a crucial task in evolutionary algorithms. A diverse population can encourage global exploration and
reduce premature convergence [16,17].

In order to preserve the population diversity, the evolutionary computing (EC) community often uses two strategies: 1)
parameter control and 2) space partition. The parameter control strategy [18] adjusts parameters of evolutionary algorithms
based on population diversity, such as varying population size [19,20], and dynamically adjusting the probability of cross-
over [21,22] and mutation [23,24]. The strategy is easy to implement population diversity and does not require additional
storage spaces. However, it does not know or remember where individuals are in a search space so that it could produce
invalid individuals, such as individuals similar to those of the previous generations.

The space partition strategy [25–30] splits a search space into many subspaces and generates individuals in different sub-
spaces. As individuals in different subspaces have different phenotypes or genotypes, the strategy is easy to control popu-
lation diversity quantitatively by generating individuals from different subspaces. Meanwhile, the strategy remembers an
individual’s approximate position in the search space according to the individual’s subspace. Although the space partition
strategy has been successfully applied in GA, it is not suitable for the SR problem, because the whole search space of SR
is so large that maintaining fine-grained subspaces is intractable computationally.

In this paper, we propose a new gene expression programming based on space partition and jump (named SPJ-GEP) to
maintain the population diversity. SPJ-GEP has the advantages of the above two strategies: it requires small additional stor-
age space, remembers the position of an individual in the search space, and maintains quantitative population diversity. The
SPJ-GEP partitions the space of mathematical expressions into k subspaces based on the chromosome coding. Moreover, it
initializes individuals in one of the k subspaces, as shown in Step 1 in Fig. 1.

Next, SPJ-GEP selects a suitable subspace to search for individuals with better fitnesses based on a subspace selection
method that combines the multi-armed bandit (MAB) [31] and the �-greedy strategy [32], as shown in Step 2 and 3 in
Fig. 1. This method utilizes MAB to choose one of the subspaces because MAB can balance the exploration by searching other
subspaces while maintaining the exploitation of the selected subspace. However, MAB will be invalid when the number of
visiting subspaces is higher than a specific value. To preserve population diversity, the method then switches to the �-greedy
strategy to choose a subspace according to a proposed time formula. The formula decides when to use the �-greedy strategy.

At last, SPJ-GEP uses a new crossover method to make individuals jump from the original subspace to another selected
subspace, as shown in Step 4 in Fig. 1. The method makes these newly selected individuals intersect with the best individual
in the selected subspace so that they can start searching at the latest local optimal position.

The characteristics of SPJ-GEP indicates that classical GEPs [10–12] are a special case of SPJ-GEP when the number of sub-
spaces k equals 1. On the other hand, if k is large enough that each subspace has only one individual, SPJ-GEP will degenerate
into a random selection subspace algorithm. Therefore, k is a critical parameter in SPJ-GEP. In this paper, the range of k is
decided by the population diversity and the probability of jump between subspaces. We analyze the complexity of time
and space of SPJ-GEP and prove that SPJ-GEP does not significantly increase the time and space complexity compared with
classical GEPs.

The main contributions in the paper are summarized as follows:

� We propose the SPJ-GEP algorithm, which allows individuals in a population to jump between subspaces according to the
MAB and the �-greedy strategy. This approach maintains the population diversity.
Fig. 1. The SPJ-GEP framework. Circles represent individuals, and dark circles are the best individuals in subspaces. Step 1. space segmentation; Step 2.
subspace selection; Step 3. subspace exploitation; Step 4. escape from local optimum by subspace jump.







According to the coding of individuals in GEP, i.e., encoding an individual to a linear structure with the fixed-length l and the
head length h, the space of mathematical expression is denoted as Xl;h ¼ ‘ � . . . � � . . . � ’. l is the length of individuals (the total
number of ‘�’); h is the head length (the number of ‘�’); ‘�’ can be anyone symbol from a symbol set S that consists of a func-
tion set F and a terminal set T. In the head, if front ‘�’s are replaced by special symbols s, it can generate a subspace xs, such
as xþ ¼ ‘þ � � � � ’ in Fig. 3. Therefore, the more special symbols appear in the front of the head, the smaller the subspace’s
size becomes. For example, xþþ ¼ ‘þþ � � � ’ is a subspace of xþ, and xþþ � xþ.

Based on the above subspace encoding, these subspaces and their relationships can be represented as a space-partition
tree, where the root node is Xl;h, each of the other nodes is a subspace of Xl;h, and a branch represents a containment rela-
tionship between two subspaces, e.g., xþþ � xþ as shown in Fig. 3. From the tree, a lot of space-partition sets can be found
based on the above two conditions. For example, xþ;x�;xxf g and xþþ;xþ�;xþx;xþ;xxf g both are space-partition sets.

3.1.2. Initialization
SPJ-GEP selects a space-partition set by the following strategy. It can easily find the first level ll where the number of

nodes is equal or greater than the number of subspaces (k) according to ll P logk
jSj, where jSj is the number of symbols.

For example, in Fig. 3, if k ¼ 5 and jSj ¼ 3, then ll ¼ 2. Moreover, the algorithm discovers a space-partition set
xþþ;xþ�;xþx;x�þ



558 Q. Lu et al. / Information Sciences 547 (2021) 553–567
UCBxi
¼ 1

f �xi
þ 1

þ k

ffiffiffiffiffiffiffiffiffi
2lnt
nxi

s
ð2Þ
where xi is a subspace, f �xi
is the fitness of the best individual in xi; t is the number of visiting X until a particular time, and

nxi
is the number of times that the subspace xi is accessed to. Then, SPJ-GEP selects the best subspace xi� that has the max-

imal UCB as its exploration space.

3.2.2. Subspace selection based on �-Greedy method

As visit times increase in a subspace, the size of the confidence interval (
ffiffiffiffiffiffi
2lnt
ni

q
in Eq. 2) decrease to zero. That means UCBxi

falls back to a greedy method with the subspace value (f �xi
) and becomes invalid in the balance between exploration and

exploitation.
To overcome the above invalidation, SPJ-GEP uses the �-greedy method [35] to select a subspace when confidence inter-

vals in most of the subspaces tend to be zero. Using Eq. 2 chooses a subspace with the probability 1� �; random chooses a
subspace from the above with the probability �.

3.2.3. The time of using the �-Greedy Method
To find out when UCBxi

(Eq. 2) loses its effect on most subspaces, SPJ-GEP uses Eq. 3 in the following Theorem 1. For
example, given k ¼ 300;n ¼ 100;G ¼ 100000;a ¼ 0:1 and b ¼ 0:8, to choose a subspace xi, it uses Eq. 2 if

t < � 2�300�lnT

0:012�ln0:8
� 4333918, where T ¼ n� G ¼ 100� 10000 ¼ 107; otherwise, it uses �-greedy method.

Theorem 1. Let k be the number of subspaces, and T be the total number of times of visiting the mathematical expressions space X

after running SPJ-GEP. If the confidence interval
ffiffiffiffiffiffiffi
2lnt
nxi

r
6 a, where a ! 0þ;UCBxi will lose its effect on subspace xi. Assuming that

different nxi is independent identically distributed (i.i.d.), and each nxi is an exponential distribution with the parameter k, the
probability that each UCBxi loses its effect is greater than b when the number of times that X is accessed to.
t P �2klnT

a2lnb : ð3Þ
Proof. According to the constant T and
ffiffiffiffiffiffi
2lnt

nxi

q
6 a, we have nxi

P 2lnT

a2 so that UCBxi
are invalid in xi. Therefore, if we want to

assure that the probability, which each UCBxi
loses its effect, is greater than b, i.e., Pðnxi

P 2lnT

a2 Þ P b, the following equation
k 6 �a2lnb

2lnT ð4Þ
must be satisfied, because
Pðnxi
P 2lnT

a2 Þ ¼
R1
2lnT

a2
ke�knxi dnxi

¼ e�k2ln
T

a2

) e�k2ln
T

a2 P b:
As different nxi
is i.i.d. and each nxi

is an exponential distribution with the parameter k, we get
t ¼ E½
Xk

i¼1

nxi
� ¼ E½E½

Xk

i¼1

nxi
jk�� ¼ E½k�E½nxi

� ¼ k
k
: ð5Þ
According to formulas 4 and 5, we finally obtain formula 3.
3.3. Exploitation with crossover

Suppose that the current population is at the subspace xj, after SPJ-GEP selects a subspace xi, it makes all individuals in
the population jump from the subspace xj to the subspace xi. As the aforementioned subspace encoding, codes of these
individuals in xj start with the code of xj. So, for making them jump, it is necessary to replace their head codes with the
code of xi. For example, given two individuals ‘þþ=��xxxxxx’ and ‘þþþ�� xxxxxx’ in the subspace xþþ, the two individ-
uals will jump into the subspace xþ� after they change to ‘þ���xxxxxx’ and ‘þ�þ�� xxxxxx’ by replacing ‘++’ in their
heads with the code ‘+�’ of ‘xþ�’.

Then, it exploits xi by recombining each of the transferred individuals with the best individual in the subspace xi. For
example, if the best individual is ‘þ��þþ xxxxxx’, the above two individuals ‘þ���xxxxxx’ and ‘þ�þ�� xxxxxx’ recom-



Q. Lu et al. / Information Sciences 547 (2021) 553–567 559
bine with the best individual, respectively. The recombination makes the jumped population start to search from the local
optimal space, and speeds up the convergence.

Note that if the selected subspace xj is equal to xi, the recombination is the same as the recombination of classical GEPs
[10–12] in that any two individuals in the population recombine randomly. So, if the above subspace selection continuously
chooses the same subspace, SPJ-GEP will exploit the subspace persistently.

4. Analysis of SPJ-GEP

4.1. Time and space complexity

Compared with classical GEPs [33,37,38], SPJ-GEP requires additional structures to record the visiting times (nxi
) and the

best fitness (f �xi
), as well as extra computation to obtain UCBxi

in each subspace. The additional time and space complexity
are related to the number (k) of all subspaces. Suppose the time and space complexities for classical GEPs within g iterations
are OðgepÞ and HðgepÞ, respectively. For SPJ-GEP, they are Oðgepþ g � c � kÞ ¼ Oðgepþ n� kÞ and Hðgepþm� kÞ, where
n ¼ c � k; k > 1, and g; c, and m are constants. Therefore, if k is within a reasonable range, its time and space complexities
are acceptable. In our experimental evaluation, its running time is almost as fast as GEP’s because the value of k is generally
not very large (detail in Section 4.3).

4.2. Population diversity

To preserve the population diversity, SPJ-GEP always lets the population jump from one subspace to another subspace.
Even if an individual in a population immediately jumps back to its original subspace after two jumps, its structure has been
significantly changed according to the following Lemma 1.

Lemma 1. Suppose SPJ-GEP executes single-point crossovers with uniform distribution, and l is the length of an individual
encoding without considering its subspace encoding. After the individual has jumped k subspaces, the similarity between the
jumped individual, and the original individual is
simðkÞ ¼ 1þ l
2l

� �k

ð6Þ
Proof. Since the crossover point is randomly selected with uniform distribution, after a crossover, the expected length of the
original fragment in the new individual is ð1þ lÞ=2. Then, the similarity between the original individual and the jumped indi-

vidual is ð1þ lÞ=2l after one crossover. Therefore, after k crossovers in k subspaces, the similarity is simðkÞ ¼ ð1þl
2l Þ

k
.

For example, if the length of an individual is 20, after jumping only two subspaces, the similarity between original and
jumped individuals changes to 0:276. As k increases, simðkÞ tends to be zero. Moreover, the two individuals become more
different. Therefore, the subspace selection method, which lets the population jump from a subspace to another subspace,
diversifies the population so that it helps prevent a local optimum in SPJ-GEP.

4.3. The number of subspaces

The number of subspaces k is a critical parameter in SPJ-GEP. If k ¼ 1, it means that there is only one subspace in X. So,
when the subspace is X, SPJ-GEP degenerates into a standard GEP. If k is large enough that there is only one individual in a
subspace, each subspace is an individual. In this case, SPJ-GEP degenerates into the random initialization algorithm, ran-
domly generating an individual (i.e., a subspace) in X. Therefore, if k is too large or too small, the algorithm performance will
be degraded.

According to Lemma 1, the larger k, the smaller the similarity. Then, SPJ-GEP needs a smaller similarity to escape from the
local optimum. Based on the following Theorem 2, we have the lower bound of k. Besides, the larger k, the smaller the prob-
ability that an individual jumps in its original subspace. The probability must be larger enough that SPJ-GEP can exploit a
subspace continuously for a while. Otherwise, SPJ-GEP will always explore a different subspace that breaks the balance
between exploration and exploitation. So, based on the following Theorem 3, we have the implicit expression of the upper
bound of k.

Theorem 2. Suppose an individual returns to the original subspace after it jumps k subspaces, in order to guarantee the similarity

between the original individual and the new back individual is less than or equal to g, the lower bound of k is lng

ln1þl�ln2l
.

Proof. According to Eq. 6 in Lemma 1, ð1þl
2l Þ

k 6 g. Then, we have



560 Q. Lu et al. / Information Sciences 547 (2021) 553–567
k P
lng

ln1þl � ln2l ð7Þ
When the running time of SPJ-SEP exceeds a specific time, SPJ-SEP uses the �-greedy strategy to select a subspace accord-
ing to Theorem 1. Most of the subspaces are selected randomly. So, the jump probability Pði; jÞ between subspace i and j sat-
isfies a long tail distribution. Moreover, the probability that the subspace with the best UCBxi

will be selected again is 1� �,
and the probability is higher than the probability of selecting other subspace, i.e., Pði; iÞ > Pði; jÞ. If SPJ-SEP uses the best UCBxi

(MAB) to select a subspace, the same conclusions Pði; jÞ satisfies a long tail distribution and Pði; iÞ > Pði; jÞ can be obtained
through an analysis similar to the above.
Theorem 3. Suppose the jump probability Pði; jÞ between subspace i and j satisfies the Zipf distribution [39], in order to guarantee
that Pði; iÞ P d, the number of subspace k satisfies the following inequality.
1Xk

i¼1

1
i

� �c P d ð8Þ
Proof. Since Pðxi;jÞ satisfies Zipf distribution, whose probability mass function of Zipf is f ðxÞ ¼ 1

xc
Pk

i¼1
ð1=iÞc

, where

x ¼ 1;2; . . . ; k; k is the number of subspace, and c is a parameter.
pði; iÞ ¼ f ð1Þ ¼ 1Xk

i¼1

ð1=iÞc
P d ð9Þ
owing to f ð1Þ > f ðxÞ when x– 1.
For example, if c ¼ 0, the Zipf distribution will degenerate into a uniform distribution. According to Eq. 8, 1

k P c. So,

k 2 lng

ln1þl�ln2l
; 1c

h i
.

Table 2
GP Problems.

Name Formula Dataset

F1 x6 þ x5 þ x4 þ x3 þ x2 þ x U[�1, 1, 20]
F2 x4 þ x3 þ x2 þ x U[�1, 1, 20]
F3 x5 � 2x3 þ x U[�1, 1, 20]
F4 sinðx2ÞcosðxÞ � 1 U[�1, 1, 20]
F5 sinðxÞ þ sinðxþ x2Þ U[�1, 1, 20]
F6 lnðxþ 1Þ þ lnðx2 þ 1Þ U[0, 2, 20]
F7 2sinðxÞcosðyÞ U[�1, 1, 100]
F8 1:57þ ð24:3vÞ U[�50, 50, 10000]
F9 6:87þ 11cosð7:23x3Þ U[�50, 50, 10000]
F10 2� 2:1cosð9:8xÞsinð1:3wÞ U[�50, 50, 10000]
F11 0:3xsinð2� xÞ E[�1, 1, 0.1]
F12 lnx E[1,1]
F13 xy U[0, 1, 100]
F14 x4 � x3 þ y2

2 � y U[�3, 3, 20]

F15 x3
5 þ y3

2 � y� x U[�3, 3, 20]

F16 e�xx3ðcosxsinxÞðcosxsin2x� 1Þ E[0.05, 10, 0.1]

F17 e�ðx�1Þ2

1:2þðy�2:5Þ2
U[0.3, 4, 100]

F18 e�xx3ðcosxsinxÞðcosxsin2x� 1Þ x:E[0.05, 10, 0.1]

�ðy� 5Þ y:E[0.05, 10.05, 2]
F19 ðx� 3Þðy� 3Þ þ 2sinððx� 4Þðy� 4ÞÞ U[0.05, 6.05, 300]
F20 ðx�3Þ4þðy�3Þ3�ðy�3Þ

ðy�2Þ4þ10
U[0.05, 6.05, 50]

The function sets of F1 � F7; F8 � F10 ; F11 � F15 and F16 � F20 are from Koza
[1], Korns [41], Keijzer [42] and Vladislavleva [43], respectively.



5. Experiments

5.1. Dataset and experimental parameters

In this paper, the dataset consists of 20 SR test problems that are derived from the GP benchmarks [40], as shown in
Table 2. The functions and constants of the data set are shown in Table 3. To evaluate the proposed algorithm SPJ-GEP,
we have created three algorithms SPJ-GEP, SPJ-GEP-ADF, and SPJ-SL-GEP based on the three baseline GEPs: GEP [10],
GEP-ADF [11], and SL-GEP [12], respectively. The three new algorithms have the same parameters as these GEPs have except
for the additional parameters k;a, and b. The detailed parameters of the above six algorithms are described in Table 4.

We set the number of subspaces k a particular value according to the number of nodes on a specific layer in the space-
partition tree. Since the evaluation consists of six basic benchmarks, and each basic benchmark has different function sym-
bols and terminal symbols, SPJ-GEP, SPJ-GEP-ADF, and SPJ-SL-GEP have different k values for different basic benchmarks. In
Table 4, the last row shows the range of k is [144–1000]. For example, in the Koza basic benchmark, there is a function sym-
bol set þ;�;�; =; sin; cos; lnðjxjÞ; exf g, whose length is 8, and a terminal set x1; x2f g, whose length is 2. When a space-partition

set is obtained by nodes on the 3rd layer in the space-partition tree, the number of the subspaces k is ð8þ 2Þ3 ¼ 1000.

5.2. Verification of subspaces selection method

Looking back at the subspace selection in SPJ-GEP, Inequality 3 is a key to decide when the UCB (Eq. 2) loses its effect on
selecting subspaces. To verify the accuracy and the correctness of Inequality 3, we run SPJ-GEP with different values of

parameter k (100,200 and 300) on five test problems. When t P � 2klnT

a2 lnb
, where T ¼ 100000� 100, such as

t P 2�100�ln10
7

ð0:1Þ2�ln0:8
� 1444639, the algorithm stops. Then, we sum up the number of subspaces where UCB has lost its effect

according to the following Inequality
ffiffiffiffiffiffiffiffiffi
2lnT

nxi

s
6 a ð10Þ
where nxi
is the number of times that the subspace xi is accessed to. Finally obtain the probability of subspace convergence

(PSC) by Eq. 11
PSC ¼ s
k

ð11Þ
Table 3
The Functions and Constants of Data Set.

Name Functions Constants(ERC)

Koza þ;�;�; =; sin; cos; en; lnðjnjÞ None
Korns þ;�;�; =; sin; cos; en; lnðjnjÞ Random finite 64bit

n2;n3;
ffiffiffi
n











566 Q. Lu et al. / Information Sciences 547 (2021) 553–567
cellular [46] [30], hierarchical [47], and pool models [48]. These dEAs can increase the population diversity because their
subpopulations run independently in different subspaces, and transfer their best individuals by a migration strategy. As they
are distributed algorithms, they pay more attention to the communication cost and scalability and pay no attention to the
subspace selection method, so that they could waste a lot of computation time on invalid subspaces.

Different from the above methods of partitioning global space, Tsutsui [49] and Huang [50] proposed two methods of
local spaces that are created by the convergence status of the present population respectively. Tsutsui [49] proposed the
forking GA (fGA) which divides the search space for each population into subspaces depending on the convergence status
of the population and the solutions obtained so far. Then two types of fGAs (genotypic fGA and phenotypic fGA) are created
to maintain population diversity by defining two searching subspaces of each sub-populations, respectively. One is the sali-
ent schema which defines subspaces by phenotype parameters of the present population. The other is the neighborhood
hypercube which defines the local subspaces around the current best individual in the phenotypic feature space. The forking
GA can avoid the premature convergence of populations because the searching method enables the population to exploit
different local subspaces. Although Huang [50] proposed a differential evolution (DE) method based on the three spaces:
local space, opposition space, and global space, the three spaces are all local spaces because the global space refers to the
space near the best individual in a population, and its opposition space. So, the method can accelerate convergence but can-
not avoid falling into a local optimum.
7. Conclusion and future work

In the paper, we propose a novel algorithm, SPJ-GEP, to deal with the SR problem. Using the new approach that partitions
the space of mathematical expressions into subspaces, SPJ-GEP guides the population effectively jump among these sub-
spaces with a subspace selection method. SPJ-GEP maintains the population diversity while keeping the balance between
subspace exploration and exploitation. Therefore, the proposed SPJ-GEP has the following advantages. SPJ-GEP can be easily
embedded in other GEPs because its three key components – space partition, subspace selection, and crossover, are compat-
ible with other GEPs. As shown in the evaluation analysis, SPJ-GEP does not significantly increase the time and space com-
plexity compared with classical GEPs. SPJ-GEP can overcome the problem of premature convergence and avoid falling into a
local optimum.

Although SPJ-GEP surpasses the tested baseline GEPs on most benchmarks, it has two weaknesses that prevent it from
quickly finding better results than the baseline GEPs on a few benchmarks. One is that SPJ-GEP does not define how to choose
the best space-partition set from the space-partition tree. After all, the quality of the set directly affects the search results of
SPJ-GEP. The other weakness is that the selected subspace may not be the subspace where the optimal result is located. In
this case, the jump to these selected subspaces could result in an unreasonable search. In the future, we will address these
weaknesses by quantifying these subspaces.
CRediT authorship contribution statement

Qiang Lu: Conceptualization, Methodology, Validation, Writing - original draft, Writing - review & editing. Shuo Zhou:
Formal analysis, Data curation, Software, Visualization. Fan Tao: Visualization, Validation. Jake Luo:Writing - review & edit-
ing. Zhiguang Wang: Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by China National Key Research Project (No. 2019YFC0312003), National Natural Science Foun-
dation of China (No. 61402532) and the Science Foundation of China University of Petroleum-Beijing (No. 01JB0415).

References

[1] John R. Koza, Genetic programming as a means for programming computers by natural selection, Stat. Comput. 4 (2) (1994) 87–112, https://doi.org/
10.1007/BF00175355.

[2] R.I. McKay, N.X. Hoai, P.A. Whigham, Y. Shan, M. O’Neill, Grammar-based genetic programming: a survey, Genet. Program Evolvable Mach. 11 (3)
(2010) 365–396.

[3] Q. Lu, J. Ren, Z. Wang, Using genetic programming with prior formula knowledge to solve symbolic regression problem, Comput. Intell. Neurosci. 1
(2016) 1–19.

[4] A. Moraglio, K. Krawiec, C.G. Johnson, Geometric Semantic Genetic Programming, in: Parallel Problem Solving from Nature - PPSN XII, Vol. 7491,
Springer, Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 21–31..

[5] Q. Chen, B. Xue, M. Zhang, Improving generalization of genetic programming for symbolic regression with angle-driven geometric semantic operators,
IEEE Trans. Evol. Comput. 23 (3) (2019) 488–502.

https://doi.org/10.1007/BF00175355
https://doi.org/10.1007/BF00175355
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0010
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0010
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0015
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0015
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0025
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0025


Q. Lu et al. / Information Sciences 547 (2021) 553–567 567
[6] M. Schmidt, H. Lipson, Comparison of tree and graph encodings as function of problem complexity, in: Proceedings of the 9th annual conference on
Genetic and evolutionary computation, GECCO ’07, Association for Computing Machinery, London, England, 2007, pp. 1674–1679.

[7] M. Schmidt, H. Lipson, Distilling free-form natural laws from experimental data, Science 324 (5923) (2009) 81–85.
[8] J.F. Miller, S.L. Harding, Cartesian Genetic Programming, in: Proceedings of the 10th Annual Conference Companion on Genetic and Evolutionary

Computation, GECCO ’08, ACM, New York, NY, USA, 2008, pp. 2701–2726.
[9] J.F. Miller, Cartesian genetic programming: its status and future, Genet. Program Evolvable Mach. (2019) 1–40.
[10] C. Ferreira, Gene expression programming: a new adaptive algorithm for solving problems, Complex Syst. 13 (2) (2001) 87–129.
[11] C. Ferreira, Automatically defined functions in gene expression programming, Genetic Systems Programming, Springer, 2006, pp. 21–56.
[12] J. Zhong, Y.S. Ong, W. Cai, Self-learning gene expression programming, IEEE Trans. Evol. Comput. 20 (1) (2016) 65–80, https://doi.org/10.1109/

TEVC.2015.2424410.
[13] M.F. Brameier, W. Banzhaf, Linear genetic programming, Springer Science & Business Media, 2007.
[14] Yee Leung, Yong Gao, Xu. Zong-Ben, Degree of population diversity: a perspective on premature convergence in genetic algorithms and its markov

chain analysis, IEEE Trans. Neural Networks 8 (5) (1997) 1165–1176, https://doi.org/10.1109/72.623217.
[15] M. Črepinšek, S.-H. Liu, M. Mernik, Exploration and Exploitation in Evolutionary Algorithms: A Survey, ACM Comput. Surv. 45 (3) (2013) 35:1–35:33.

doi:10.1145/2480741.2480752..
[16] E. Burke, S. Gustafson, G. Kendall, Diversity in genetic programming: an analysis of measures and correlation with fitness, IEEE Trans. Evol. Comput. 8

(1) (2004) 47–62, https://doi.org/10.1109/TEVC.2003.819263.
[17] D. Sudholt, The Benefits of Population Diversity in Evolutionary Algorithms: A Survey of Rigorous Runtime Analyses. http://arxiv.org/abs/1801.10087..
[18] G. Karafotias, M. Hoogendoorn, A.E. Eiben, Parameter control in evolutionary algorithms: trends and challenges, IEEE Trans. Evol. Comput. 19 (2)

(2015) 167–187, https://doi.org/10.1109/TEVC.2014.2308294.
[19] R.E. Smith, E. Smuda, Adaptively resizing populations: algorithm, analysis, and first results, Complex Systems 9 (1) (1995) 47–72.
[20] G.R. Harik, F.G. Lobo, A Parameter-less Genetic Algorithm, in: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation -

Volume 1, GECCO’99, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999, pp. 258–265..
[21] L.J. Eshelman, D.J. Schaffer, in: R.K. Belew, L.B. Booker (Eds.), Preventing premature convergence in genetic algorithms by preventing incest

Proceedings of the Fourth International Conference on Genetic Algorithms, Morgan Kaufmann, San Francisco, CA, 1991, pp. 115–122.
[22] Y. Wang, Z. Cai, Q. Zhang, Enhancing the search ability of differential evolution through orthogonal crossover, Inf. Sci. 185 (1) (2012) 153–177.
[23] Sibylle D. Mfiller, Nicol N. Schraudolph, Petros D. Koumoutsakos, Step size adaptation in evolution strategies using reinforcement learning, in:

Congress on Evolutionary Computation, Vol. 1, IEEE, 2002, pp. 151–156. doi:10.1109/CEC.2002.1006225..
[24] K.M.S. Badran, P.I. Rockett, The Roles of Diversity Preservation and Mutation in Preventing Population Collapse in Multiobjective Genetic Programming,

in: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO ’07, ACM, New York, NY, USA, 2007, pp. 1551–1558,
https://doi.org/10.1145/1276958.1277272.

[25] S.Y. Yuen, C.K. Chow, A non-revisiting genetic algorithm, in: IEEE Congress on Evolutionary Computation, 2007, pp. 4583–4590. doi:10.1109/
CEC.2007.4425072..

[26] S.Y. Yuen, C.K. Chow, A genetic algorithm that adaptively mutates and never revisits, IEEE Trans. Evol. Comput. 13 (2) (2009) 454–472, https://doi.org/
10.1109/TEVC.2008.2003008.

[27] C.K. Chow, S.Y. Yuen, An evolutionary algorithm that makes decision based on the entire previous search history, IEEE Trans. Evol. Comput. 15 (6)
(2011) 741–769, https://doi.org/10.1109/TEVC.2010.2040180.

[28] Y.-J. Gong, W.-N. Chen, Z.-H. Zhan, J. Zhang, Y. Li, Q. Zhang, J.-J. Li, Distributed evolutionary algorithms and their models: a survey of the state-of-the-
art, Appl. Soft Comput. 34 (2015) 286–300, https://doi.org/10.1016/j.asoc.2015.04.061.

[29] D. Whitley, S. Rana, R.B. Heckendorn, Island model genetic algorithms and linearly separable problems, in: D. Corne, J.L. Shapiro (Eds.), Evolutionary
Computing, Lecture Notes in Computer Science, Springer, Berlin Heidelberg, 1997, pp. 109–125.

[30] E. Alba, B. Dorronsoro, Cellular Genetic Algorithms, Operations Research/Computer Science Interfaces Series, Springer, US, 2008.
[31] Peter Auer, Nicolò Cesa-Bianchi, Paul Fischer, Finite-time analysis of the multiarmed bandit problem, Mach. Learn. 47 (2) (2002) 235–256, https://doi.

org/10.1023/A:1013689704352.
[32] R. Sutton, A. Barto, Reinforcement Learning: An Introduction 2nd, MIT Press, 2018.
[33] J. Zhong, Y.S. Ong, W. Cai, Self-learning gene expression programming, IEEE Trans. Evol. Comput. 20 (1) (2016) 65–80, https://doi.org/10.1109/

TEVC.2015.2424410.
[34] Michael N. Katehakis, Arthur F. Veinott, The multi-armed bandit problem: decomposition and computation, Math. Operations Res. 12 (2) (1987) 262–

268.
[35] Zhi-xiong Xu, Xi-liang Chen, Lei Cao, Chen-xi Li, A study of count-based exploration and bonus for reinforcement learning, International Conference on

Cloud Computing and Big Data Analysis (2017) 425–429doi:10.1109/ICCCBDA.2017.7951951..
[36] N. Cesa-Bianchi, C. Gentile, G. Lugosi, G. Neu, Boltzmann exploration done right, in: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.

Vishwanathan, R. Garnett (Eds.), Advances in Neural Information Processing Systems 30, Curran Associates Inc, 2017, pp. 6284–6293.
[37] X. Li, W. Zhou, Chiand Xiao, P.C. Nelson, Prefix gene expression programming, Genetic and Evolutionary Computation Conf. (2005) 55–31..
[38] Jonathan Mwaura, Ed Keedwell, Adaptive gene expression programming using a simple feedback heuristic (2009) 6..
[39] M.W. David. Powers, Applications and explanations of zipf’s law, in: Proceedings of the joint conferences on new methods in language processing and

computational natural language learning, 1998, pp. 151–160..
[40] James McDermott, David R. White, et al, Genetic programming needs better benchmarks, ACM Press (2012) 791, https://doi.org/10.1145/

2330163.2330273.
[41] Michael F. Korns, Accuracy in symbolic regression, in: Genetic Programming Theory and Practice IX, Springer, New York, 2011, pp. 129–151, https://

doi.org/10.1007/978-1-4614-1770-5-8.
[42] Maarten Keijzer, Improving symbolic regression with interval arithmetic and linear scaling, in: Genetic Programming, Vol. 2610, Springer, Berlin

Heidelberg, 2003, pp. 70–82. doi:10.1007/3-540-36599-0-7..
[43] E. Vladislavleva, G. Smits, D. den Hertog, Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic

programming, IEEE Trans. Evol. Comput. 13 (2) (2009) 333–349, https://doi.org/10.1109/TEVC.2008.926486.
[44] Frank Wilcoxon, Individual comparisons by ranking methods, Biometrics Bulletin 1 (2) (1994) 80–83, https://doi.org/10.2307/3001968, http://www.

jstor.org/stable/3001968.
[45] F. Herrera, M. Lozano, Gradual distributed real-coded genetic algorithms, IEEE Trans. Evol. Comput. 4 (1) (2000) 43–63, https://doi.org/10.1109/

4235.843494.
[46] D. Bernabé, T. Marco, G. Mario, A. Enrique, Decentralized cellular evolutionary algorithms, in: Handbook of Bioinspired Algorithms and Applications,

Chapman and Hall/CRC, 2005, pp. 121–138..
[47] G. Folino, C. Pizzuti, G. Spezzano, Training distributed GP ensemble with a selective algorithm based on clustering and pruning for pattern

classification, IEEE Trans. Evol. Comput. 12 (4) (2008) 458–468, https://doi.org/10.1109/TEVC.2007.906658.
[48] G. Roy, H. Lee, J.L. Welch, Y. Zhao, V. Pandey, D. Thurston, A distributed pool architecture for genetic algorithms, in: 2009 IEEE Congress on Evolutionary

Computation, 2009, pp. 1177–1184, https://doi.org/10.1109/CEC.2009.4983079.
[49] S. Tsutsui, Y. Fujimoto, A. Ghosh, Forking genetic algorithms: Gas with search space division schemes, Evol. Comput. 5 (1) (1997) 61–80.
[50] W. Huang, S.-K. Oh, Z. Guo, W. Pedrycz, A space search optimization algorithm with accelerated convergence strategies, Appl. Soft Comput. 13 (12)

(2013) 4659–4675, https://doi.org/10.1016/j.asoc.2013.06.005.

http://refhub.elsevier.com/S0020-0255(20)30827-6/h0030
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0030
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0030
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0035
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0040
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0040
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0040
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0045
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0050
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0055
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0055
https://doi.org/10.1109/TEVC.2015.2424410
https://doi.org/10.1109/TEVC.2015.2424410
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0065
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0065
https://doi.org/10.1109/72.623217
https://doi.org/10.1109/TEVC.2003.819263
https://doi.org/10.1109/TEVC.2014.2308294
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0095
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0105
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0105
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0105
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0105
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0105
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0110
https://doi.org/10.1145/1276958.1277272
https://doi.org/10.1109/TEVC.2008.2003008
https://doi.org/10.1109/TEVC.2008.2003008
https://doi.org/10.1109/TEVC.2010.2040180
https://doi.org/10.1016/j.asoc.2015.04.061
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0145
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0145
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0145
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0145
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0145
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0150
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0150
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0160
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0160
https://doi.org/10.1109/TEVC.2015.2424410
https://doi.org/10.1109/TEVC.2015.2424410
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0170
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0170
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0180
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0180
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0180
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0180
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0180
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0180
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0180
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0180
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0180
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0180
https://doi.org/10.1145/2330163.2330273
https://doi.org/10.1145/2330163.2330273
https://doi.org/10.1007/978-1-4614-1770-5-8
https://doi.org/10.1007/978-1-4614-1770-5-8
https://doi.org/10.1109/TEVC.2008.926486
https://doi.org/10.2307/3001968
https://doi.org/10.1109/4235.843494
https://doi.org/10.1109/4235.843494
https://doi.org/10.1109/TEVC.2007.906658
https://doi.org/10.1109/CEC.2009.4983079
http://refhub.elsevier.com/S0020-0255(20)30827-6/h0245
https://doi.org/10.1016/j.asoc.2013.06.005

	Enhancing gene expression programming based on space partition and jump for symbolic regression
	1 Introduction
	2 Background
	2.1 Gene expression programming for symbolic regression
	2.2 Multi-armed bandit problem

	3 Gene expression programming based on space partition and jump
	3.1 Space partition
	3.1.1 Encoding
	3.1.2 Initialization

	3.2 Subspace selection
	3.2.1 Subspace selection based on UCB1
	3.2.2 Subspace selection based on [$] \epsilon [$]‐Greedy method
	3.2.3 The time of using the [$] \epsilon [$]‐Greedy Method

	3.3 Exploitation with crossover

	4 Analysis of SPJ-GEP
	4.1 Time and space complexity
	4.2 Population diversity
	4.3 The number of subspaces

	5 Experiments
	5.1 Dataset and experimental parameters
	5.2 Verification of subspaces selection method
	5.3 Performance metrics for comparison
	5.4 Comparison of population diversity
	5.5 Convergence comparison

	6 Related work
	7 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References


