

Jiwei Huang^{1,2} . Songyuan Li³ · Ying Chen⁴

Received: 31 August 2019 / Accepted: 16 January 2020 / Published online: 6 March 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

-

1 Introduction

29 .

	34 . A	() 39,	100
(B)	2025,	70%		180
	•			,

, ,

🙆 Springer

()

A

•

 $\underline{\textcircled{O}}$ Springer

.

2.2 Edge computing

. 27

,

3 System model and problem formulation

.

3.1 Fundamental notations

System overview

,

Table 1

t, τ

Γ									
i, N, N		, ,							
j, M, \mathcal{M}		, ,		/					
B_i			i						
L_j					/	ن.	i		
\mathcal{M}_i			/			i			
N_j						/		j	
μ_i^{lc}, μ_i^{rc}		T		i			,		
$f_i, f_{\mathcal{M}}$	•	,	i,						
τ_i^{lc}, τ_i^{rc}		,	,					i	
δ_i^{rc}			i						
w_i, h_i, p_i			,	,				i	
σ									
$d_{i,j}^{tr}, \tau_{i,j}^{tr}$,		i		j		
τ_i					i				
/ _{<i>i</i>,<i>j</i>}						j		i	
$A_j, R_j(t)$			j		,				t
$k, \mathcal{R}_j(t)$,				Í	. t		
$\alpha_{i,j}(t)$			Ĵ		26		i		
$\frac{\lambda_{i,j}^{\kappa}(t)}{2}$				λ-	26				
		,			1.				
	t.					. 6.			

, $j \in \mathcal{M}$. N . A B_i 3.1,

,

 $\sum_{i\in\mathcal{N}}^{\tau_i} \frac{B_i}{\tau_i^{rc}} \cdot \alpha_{i,j}(t)$ (4)

$$i, \qquad j \in \mathcal{M} \qquad ,$$
(5)

 $\alpha_{i,j}(t) \le R_j(t) \qquad \forall j \in \mathcal{M}, \quad \forall t \in \mathcal{T}_{i,j}$ (5) $i \in \mathcal{N}_j$

Β,

 τ_i

,

,

$$\substack{\tau_i \\ \alpha_{i,j}(t) \\ i \in \mathcal{N} \ j \in \mathcal{M}_i \ t = \tau_i^{lc} + \tau_{i,j}^{lr}} \frac{B_i}{\tau_i^{rc}} \cdot \alpha_{i,j}(t)$$
(7)

$$\alpha_{i,j}(t) \le R_j(t) \qquad \forall j \in \mathcal{M}, \quad \forall t \in \mathcal{T}_{i,j}$$

$$i \in \mathcal{N}_j$$
(8)

$$\begin{aligned} \tau_i \\ \alpha_{i,j}(t) &\leq \tau_i^{rc} \qquad \forall i \in \mathcal{N} \\ j \in \mathcal{M}_i \ t = \tau_i^{lc} + \tau_{i,j}^{tr} \end{aligned}$$
(9)

$$\begin{aligned} \alpha_{i,j}(t) &\in \mathcal{R}_j(t) \quad \forall i \in \mathcal{N}, \quad \forall j \in \mathcal{M}_i, \quad \forall t \in \mathcal{T}_{i,j} \quad (10) \\ \mathcal{R}_j(t) \\ &\{0, 1, \dots, R_j(t)\}, \quad \mathcal{T}_{i,j} \\ &\{\tau_i^{lr} + \tau_{i,j}^{lr} + \tau_{i,j}^{lr} + 1, ..., \tau_i \quad \}. \end{aligned}$$

t

() , -16 . , 4.

4 Algorithm design

4.1 Task scheduling framework overview

A 1 - , . , . , A Γ . A Γ . R, N, N, $(..., B_i, \tau_i, etc.)$. A

 $\Gamma = \Gamma + 1.$

4.2 Integral optimum guarantee

 $\mathbf{C}_{r \times c}$. . . : (8) (9), . 11 r С, 12. $r_1 r_2$ **(8) (9)**. α. $r = r_1 + r_2$ (11) { $\begin{aligned} \tau_i & -\tau_i^{lc} - \tau_{i,j}^{tr} + 1 & +N \\ j \in \mathcal{M}_i \in \mathcal{N}_j \end{aligned}$ = $\tau_i = \tau_i^{lc} - \tau_i^{lc} - \tau_{i,j}^{tr} + 1$ (12) c = $\mathbf{C}_{r \times c}$, {0, 1}, 1 -1, 0, 1. , 2, $\{1, 2, ..., r_1\}$ *R*₁. A $R_1 \quad R_2 = \emptyset.$ R_2 , $\mathbf{C}_{r \times c}$ $a_{x,y}$, х у (<mark>8</mark>), $R_1 \qquad 1 \times c$ 1, . 13. (9), $1 \times c$ R_1 1, (14). (13) (14) 2 . 15. $\mathbf{C}_{r \times c}$

 $a_{x,y} = 1, \ \forall y \in \{1, 2, ..., c\}$ (13) $x \in R_1$

 $a_{x,y} = 1, \ \forall y \in \{1, 2, ..., c\}$ (14) $x \in R_2$

 $a_{x,y} - a_{x,y} = 0 \le 1, \ \forall y \in \{1, 2, ..., c\}$ (15) $x \in R_1 \qquad x \in R_2$

,
$$\mathbf{C}_{r \times c}$$

 $\alpha_{i,j}(t) \in 0, R_j(t) \quad \forall i \in \mathcal{N}, \forall j \in \mathcal{M}_i, \forall t \in \mathcal{T}_{i,j} \quad (16)$

4.3 Equivalent LP transformation

(7)

$$\begin{array}{rcl} \alpha_{i,j}(t) & \in & \mathcal{R}_j(t) & = \\ 0, 1, ..., R_j(t) \}, & & (4) \\ \lambda - & & . \end{array}$$

$$\tau_{i} \qquad R_{j}(t) = \frac{B_{i}}{\tau_{i}^{rc}} \cdot k \cdot \lambda_{i,j}^{k}(t)$$

$$i \in \mathcal{N} \ j \in \mathcal{M}_{i} \ t = \tau_{i}^{lc} + \tau_{i,j}^{tr} \ k = 0$$
(17)

,
$$\alpha_{i,j}(t)$$

(7)
 $k \in \mathcal{R}_j(t),$
 $\lambda_{i,j}^k(t) \in \mathbb{R}^+,$

.

$$\alpha_{i,j}(t) = \begin{cases} R_j(t) & R_j(t) \\ k \cdot \lambda_{i,j}^k(t), & \lambda_{i,j}^k(t) = 1 \\ k = 0 & k = 0 \end{cases}$$
(18)

$$\lambda_{i,j}^{k}(t) \in \mathbb{R}^{+}, \ \forall k \in \mathcal{R}_{j}(t)$$
(19)

(<mark>10</mark>),

,

,

$$\begin{array}{ccc} & \tau_i & R_j(t) \\ & \pi_{i,j}(t), \lambda_{i,j}^k(t) & i \in \mathcal{N} \ j \in \mathcal{M}_i \ t = \tau_i^{lc} + \tau_{i,j}^{tr} \ k = 0 \end{array} \frac{B_i}{p_i} \cdot k \cdot \lambda_{i,j}^k(t) \quad (20)$$

$$R_{j}(t) k \cdot \lambda_{i,j}^{k}(t) \le R_{j}(t) \quad \forall j \in \mathcal{M}, \quad \forall t \in \mathcal{T}_{i,j} \quad (21)$$

$$i \in \mathcal{N}_{j} \ k=0$$

$$\tau_{i} \qquad R_{j}(t) \\ k \cdot \lambda_{i,j}^{k}(t) \leq \tau_{i}^{rc} \qquad \forall i \in \mathcal{N} \qquad (22)$$
$$j \in \mathcal{M}_{i} \ t = \tau_{i}^{lc} + \tau_{i,j}^{tr} \quad k = 0$$

5 Evaluation

5.1 Experimental setup

2,

,

В

 L_i, B_i, τ_i


```
),
( )-458.799987 .
1
```

.

,

6 Conclusion and future work

,

.

