ORIGINAL ARTICLE

GMM discriminant analysis with noisy label for each class

Jian-wei Liu¹ · Zheng-ping Ren¹ · Run-kun Lu¹ · Xiong-lin Luo¹

Received: 8 June 2019/Accepted: 13 May 2020/Published online: 1 June 2020 © Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract

Keywords ^X ^X

1 Introduction

- .

.

2,2,²,². X X

f X f f f f (). f Х ff f f f 1. ff f f

f f f f

X X ff ff f f f f f f f . 2, f X

1.1.1 Description of the problem with the noise labels

(), $\mathbf{x} = (x_1, \ldots, x_d) \in \mathcal{X}, \qquad \mathcal{X} = \mathcal{R}^d$ f $\Omega = \{\omega_1, \omega_2, \ldots, \omega_K\}.$ $x \in \mathcal{X}$ $\begin{array}{c} \mathbf{f} \quad p(\mathbf{x}|\omega) \\ p(\omega), \ \omega \in \Omega. \\ \mathbf{f} \end{array}$ $\mathcal{S}_{\omega} \mathbf{f}$ $\omega\in \varOmega$ $egin{array}{ccc} [&&&X\ &\mathcal{S}_{\omega}, \ |\mathcal{S}| = &X\ &|\mathcal{S}_{\omega}|, \end{array}$ [$\mathcal{S}_{\omega} = \{\mathbf{x} \in \mathcal{X}\}, \ \omega \in \Omega \ ; \ \mathcal{S} =$ $\omega{\in}\Omega$ $\omega{\in}\Omega$ f $|\mathcal{S}_{\omega}|$ $|\mathcal{S}|$ f $\mathcal{S}_{\omega}.$ f X f $p(\mathbf{x}|\omega).$ L_{ω} $L_{\omega} = \frac{1}{|\mathcal{S}_{\omega}|} \mathbf{X}_{\mathbf{x} \in \mathcal{S}}$ $p(\mathbf{x}|\omega)p(\omega), \quad (\omega \in \Omega),$ $\mathbf{x} \in S_{\omega}$ f f $1/|\mathcal{S}_{\omega}|$ f $\omega\in \Omega \quad \mathbf{f}$ $x\in \mathcal{S}$), . ., ^f ($\mathbf{x} \in \mathcal{S}$, f ff $\tilde{\omega} \in \Omega$, ω. ff ' f $p(\tilde{\omega})$ $\tilde{\omega}$ f $p(\omega)$ f ω.

$$p(\omega|\tilde{\omega}) \qquad \mathbf{f} \qquad \omega$$

$$\tilde{\rho}(\mathbf{x}|\tilde{\omega}) \qquad \mathbf{f} \qquad \omega$$

$$\tilde{\rho}(\mathbf{x}|\tilde{\omega}) \qquad \mathbf{f} \qquad \omega$$

$$\tilde{\rho}(\mathbf{x}|\tilde{\omega}) = \mathbf{X} \qquad \mathbf{f} \qquad \mathbf{f}$$

$$\tilde{\rho}(\mathbf{x}|\tilde{\omega}) = \sum_{\omega \in \Omega} p(\mathbf{x}|\omega)p(\omega|\tilde{\omega}), \mathbf{x} \in \mathcal{X}, \ \tilde{\omega} \in \Omega,$$

$$\tilde{\rho}(\omega|\tilde{\omega}), \qquad \mathbf{f}$$

 $\mathbf{x} \in \mathcal{X}.$ $p(\omega|\tilde{\omega}), \ \omega \in \Omega, \ p(\tilde{\omega}),$ $egin{array}{c} \tilde{\omega} \in \Omega \ {f f} \ {f f} \end{array}$

1.1.2 Gaussian mixture model

$$\begin{split} \mathbf{X} & \mathbf{q}(\omega) = e^{-\left(1+\lambda_{G_1}\right)} \mathbf{X} & p(\mathbf{x}|\omega, \theta_{\omega}) \gamma_{\tilde{\omega}, \omega} \pi_{\omega} = 1 \\ & \overset{\omega \in \Omega}{\Rightarrow} \lambda_{G_1} = & \mathbf{X} & p(\mathbf{x}|\omega, \theta_{\omega}) \gamma_{\tilde{\omega}, \omega} \pi_{\omega} - 1. \end{split}$$

 λ_{G_1} (), $q(\omega)$ **f**

$$q(\omega) = \frac{\mathbf{P}^{p(\mathbf{x}|\omega,\theta_{\omega})\gamma_{\tilde{\omega},\omega}\pi_{\omega}}}{p(\mathbf{x}|\omega,\theta_{\omega})\gamma_{\tilde{\omega},\omega}\pi_{\omega}}$$
())
= $p(\omega|x,\tilde{\omega})$

$$p(\mathbf{x}|\omega, \theta_{\omega}) = \prod_{m \in \mathcal{M}} w_{\omega,m} g \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m}$$

$$p(\mathbf{x}|\omega, \theta_{\omega}) = \frac{\mathbf{X}}{\substack{m \in \mathcal{M} \\ m \in \mathcal{M}}} w_{\omega,m}g \ \mathbf{x} \ \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m}$$

$$= \frac{\mathbf{X}}{\substack{m \in \mathcal{M} \\ m \in \mathcal{M}}} h_{\omega,m} \frac{w_{\omega,m}g \ \mathbf{x} \ \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m}}{h_{\omega,m}}$$

$$\geq \frac{\mathbf{X}}{\substack{m \in \mathcal{M} \\ m \in \mathcal{M}}} h_{\omega,m} \frac{w_{\omega,m}g \ \mathbf{x} \ \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m}}{h_{\omega,m}}$$

$$= \frac{\mathbf{X}}{\substack{m \in \mathcal{M} \\ m \in \mathcal{M}}} h_{\omega,m} \quad w_{\omega,m}g \ \mathbf{x} \ \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} - h_{\omega,m}$$

$$\mathbf{P}$$

$$G_{2} = \frac{\begin{array}{c} \mathbf{f} \\ \mathbf{f} \\$$

$$\mathbf{f} \qquad \mathbf{f} \qquad$$

$$w_{\omega,m}g \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} - h_{\omega,m} - 1 - \lambda_{\lambda_{G_2}} = 0$$

$$\Rightarrow \quad h_{\omega,m} = \qquad w_{\omega,m}g \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} - 1 - \lambda_{\lambda_{G_2}}$$

$$\Rightarrow h_{\omega,m} = w_{\omega,m}g \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} \cdot e^{-1 + \lambda_{\lambda_{G_2}}}$$

$$\lambda_{G_2}$$
 , $h_{\omega,m}$
 λ_{G_2} , λ_{G_2

 $\bigwedge_{m \in \mathcal{M}} h_{\omega,m} = \bigwedge_{m \in \mathcal{M}} w_{\omega,m} g \mathbf{x} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} \cdot e^{-(1+\lambda_{G_2})}$

$$\Rightarrow \lambda_{G_2} = \sum_{m \in \mathcal{M}}^{\mathbf{X}} w_{\omega,m} g \mathbf{X} \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m} - 1.$$

$$\lambda_{G_2}$$
 i $h_{\omega,m}$ i

$$h_{\omega,m} = \frac{\mathbf{P}_{\omega,mg}^{W_{\omega,mg}} \mathbf{x} \ \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m}}{W_{\omega,mg} \mathbf{x} \ \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m}} \tag{()}$$

$$= (m|\mathbf{x}, \omega)$$

$$Q = \underbrace{\mathbf{M}_{\mathbf{x}}^{(1)} \mathbf{x}_{\mathbf{x}}^{(1)} \mathbf{x}_{\mathbf{x}}^$$

$$\begin{split} \boldsymbol{\varTheta} & \boldsymbol{\varTheta} = \{\boldsymbol{\varTheta}_{\omega}\}_{\omega \in \Omega}, \\ \boldsymbol{\varGamma} & \boldsymbol{\varGamma} = \gamma_{\tilde{\omega}, \omega \quad \tilde{\omega} \in \Omega}, \\ \boldsymbol{\varTheta}_{\omega} = w_{\omega, m}, \boldsymbol{\mu}_{\omega, m}, \boldsymbol{\Sigma}_{\omega, m} \quad m \in \mathcal{M}, \\ \boldsymbol{f} & \boldsymbol{I} = \{\pi_{\omega}\}_{\omega \in \Omega}, \\ \boldsymbol{\varPi} & \boldsymbol{I} = \{\pi_{\omega}\}_{\omega \in \Omega}, \\ \boldsymbol{I} = \{\pi_$$

$$p(\omega|\mathbf{x},\tilde{\omega}) = \frac{\mathbf{P}^{\boldsymbol{p}(\mathbf{x}|\omega,\theta_{\omega})\gamma_{\tilde{\omega},\omega}\pi_{\omega}}}{p(\mathbf{x}|\omega,\theta_{\omega})\gamma_{\tilde{\omega},\omega}\pi_{\omega}}$$
()

$$(m|\mathbf{x}_n, \omega_n = k) = \frac{\mathbf{p}^{w_{\omega,m}g \ \mathbf{x} \ \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m}}}{\substack{w_{\omega,m}g \ \mathbf{x} \ \omega, \mathbf{\mu}_{\omega,m}, \mathbf{\Sigma}_{\omega,m}}}$$
()

$$\begin{array}{ll} M \ step \ (\) & \mathbf{f} & \mathbf{f} \\ \Theta = \{\theta_{\omega}\}_{\omega \in \Omega}, \ \Gamma = & \gamma_{\tilde{\omega}, \omega \quad \tilde{\omega} \in \Omega}, & \Pi = \{\pi_{\omega}\}_{\omega \in \Omega}. \end{array}$$

1.1.3 Updating

 $\mathbf{f} \mathbf{\mu}_{\omega,m}$

$$\frac{\mathcal{Q}}{\sum_{\substack{\omega \in \Omega \\ b \in \Omega}}} = -\frac{\mathbf{X}}{\sum_{\substack{\omega \in \Omega \\ \omega \in \Omega}}} I(\tilde{\omega} = \omega) \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} \{ p(\omega | \mathbf{x}, \tilde{\omega}) \quad (m | \mathbf{x}, \omega) \\ + \sum_{\substack{\omega \in \Omega \\ \omega \in \Omega}}^{-1} \sum_{\substack{\omega \in \Omega \\ \omega \in \Omega}}^{-1} \mathbf{x} - \mathbf{\mu}_{\omega,m} \quad \mathbf{x} - \mathbf{\mu}_{\omega,m} \quad \mathbf{T} \sum_{\substack{\omega \in \Omega \\ \omega \in \Omega}}^{-1} 0 \Rightarrow \sum_{\substack{\omega \in \Omega \\ \omega \in \Omega}} \sum_{\substack{\omega \in \Omega \\ \omega \in \Omega}}^{-1} P \sum_{\substack{\omega \in \mathcal{S} \\ \omega \in \Omega}}^{-1} P \sum_{\substack{\omega \in \mathcal{S} \\ \omega \in \mathcal{S}}}^{-1} P$$

$$\mathbf{f}_{W_{\omega,m}}$$
 $\lambda_{w_{\omega,m}}$

 $\mathbf{P}_{m\in\mathcal{M}} w_{\omega,m} = 1,$ **f** f

$$Q_{\lambda_{w_{\omega,m}}} = Q + \lambda_{w_{\omega,m}} \quad 1 - \frac{\mathbf{X}}{\substack{m \in \mathcal{M} \\ m \in \mathcal{M}}} w_{\omega,m} \quad ,$$

, $\mathbf{f} \quad \mathbf{f} \quad \mathbf{Q}_{\lambda_{w_{\omega,m}}} \quad ... \quad w_{\omega,m}$

$$\begin{split} & \frac{\mathcal{Q}_{\lambda_{w_{\omega,m}}}}{\mathbf{X}} = 0 \\ & = \underbrace{I(\tilde{\omega} = \omega)}_{\tilde{\omega} \in \Omega} \underbrace{\mathbf{X}}_{\mathbf{x} \in \mathbf{X}} p(\omega | \mathbf{x}, \tilde{\omega}) \quad (m | \mathbf{x}, \omega) \frac{1}{w_{\omega,m}} - \lambda_{w_{\omega,m}} \\ & \Rightarrow \lambda_{w_{\omega,m}} w_{\omega,m} = I(\tilde{\omega} = \omega) \underbrace{\mathbf{X}}_{\mathbf{x} \in \mathcal{S}} p(\omega | \mathbf{x}, \tilde{\omega}) \quad (m | \mathbf{x}, \omega) \\ & \Rightarrow \overset{\tilde{\omega} \in \Omega}{\mathbf{X}} \underbrace{\mathbf{X}}_{w_{\omega,m}} w_{\omega,m} = \lambda_{w_{\omega,m}} \\ & \Rightarrow \overset{\tilde{\omega} \in \Omega}{\mathbf{X}} I(\tilde{\omega} = \omega) \underbrace{\mathbf{x}}_{\mathbf{x} \in \mathcal{S}} p(\omega | \mathbf{x}, \tilde{\omega}) \quad (m | \mathbf{x}, \omega), \end{split}$$

$$w_{\omega,m} = \frac{\mathbf{P} \underbrace{\mathbf{P}}_{\tilde{\omega} \in \Omega} \mathbf{I}(\tilde{\omega} = \omega)}_{\tilde{\omega} \in \Omega} \mathbf{P} \underbrace{\mathbf{P}}_{\mathbf{x} \in S} \mathbf{P}(\omega | \mathbf{x}, \tilde{\omega})}_{\mathbf{x} \in S} \underbrace{\mathbf{M}}_{m \in \mathcal{M}} (m | \mathbf{x}, \omega)}_{m \in \mathcal{M}}$$
(12)

$$\mathbf{f}_{\gamma_{\widetilde{\omega},\omega}}$$
 $\lambda_{\gamma_{\widetilde{\omega},\omega}}$

f

 $\mathbf{P}_{\substack{\tilde{\omega}\in\Omega}}^{\mathbf{T}}\gamma_{\tilde{\omega},\omega}=1,\\\mathbf{f}$ 1

$$egin{aligned} Q_{\gamma_{ ilde{lpha},\omega}} &= Q + \lambda_{\gamma_{ ilde{lpha},\omega}} & 1 - \displaystyle\sum_{ ilde{\omega}\in\Omega}^{\mathbf{X}} \gamma_{ ilde{\omega},\omega} & , \ & \mathbf{f} & \mathbf{f} & Q_{\gamma_{ ilde{lpha},\omega}} & \cdots & \gamma_{ ilde{lpha},\omega} & , \ & \mathbf{f} &$$

$$\frac{Q_{\gamma_{\tilde{\alpha},\omega}}}{\gamma_{\tilde{\omega},\omega}} = \sum_{\mathbf{x}\in\mathcal{S}}^{\mathbf{X}} p(\omega|\mathbf{x},\tilde{\omega}) \frac{1}{\gamma_{\tilde{\omega},\omega}} - \lambda_{\gamma_{\tilde{\omega},\omega}} \\
\Rightarrow \lambda_{\gamma_{\tilde{\omega},\omega}} \gamma_{\tilde{\omega},\omega} = \Pr(\omega|\mathbf{x},\tilde{\omega}) \\
= \frac{P}{\mathbf{P}} \frac{P}{\mathbf{P}} p(\omega|\mathbf{x},\tilde{\omega}) \\
\mathbf{x}_{\in\mathcal{S}} \tilde{\omega} \in \Omega \qquad \mathbf{f} \\
\gamma_{\tilde{\omega},\omega} = \frac{P}{\mathbf{x}_{\in\mathcal{S}} \frac{\mathbf{x}_{\in\mathcal{S}}}{\tilde{\omega}}} \qquad \mathbf{f} \\
P \\
\mathbf{y}_{\tilde{\omega},\omega} = \frac{P}{\mathbf{x}_{\in\mathcal{S}} \frac{\mathbf{x}_{\in\mathcal{S}}}{\tilde{\omega}}} \qquad \mathbf{f} \\
\mathbf{y}_{\tilde{\omega},\omega} = \frac{P}{\mathbf{x}_{\in\mathcal{S}} \frac{\mathbf{x}_{\in\mathcal{S}}}{\tilde{\omega}}} \qquad \mathbf{f} \\
\mathbf{y}_{\tilde{\omega},\omega} = \frac{P}{\mathbf{x}_{\in\mathcal{S}} \frac{\mathbf{x}_{\in\mathcal{S}}}{\tilde{\omega}}} \qquad \mathbf{f} \\
\mathbf{y}_{\tilde{\omega},\omega} = \frac{P}{\mathbf{x}_{\mathcal{S}} \frac{\mathbf{x}_{\mathcal{S}}}{\tilde{\omega}}} \qquad \mathbf{y}_{\tilde{\omega},\omega} = \frac{P}{\mathbf{x}_{\mathcal{S}} \frac{\mathbf{x}_{\mathcal{S}}}{\tilde{\omega}}} \qquad \mathbf{y}_{\tilde{\omega},\omega} \qquad \mathbf{y}_{\tilde{\omega},\omega} = \frac{P}{\mathbf{x}_{\mathcal{S}} \frac{\mathbf{x}_{\mathcal{S}}}{\tilde{\omega}}} \qquad \mathbf{y}_{\tilde{\omega},\omega} = \frac{P}{\mathbf{x}_{\mathcal{S}} \frac{\mathbf{x}_{\mathcal{S$$

$$L' - L = \frac{\mathbf{X}}{\omega \in \Omega} \frac{1}{|S|} \frac{\mathbf{X}}{\mathbf{x} \in S} q(\omega | \mathbf{x}, \psi(\mathbf{x})) \qquad \frac{p'(\mathbf{x} | \omega) p'(\omega | \psi(\mathbf{x}))}{p(\mathbf{x} | \omega) p(\omega | \psi(\mathbf{x}))} + \frac{1}{|S|} \frac{\mathbf{X}}{\mathbf{x} \in S} \frac{\mathbf{X}}{\omega \in \Omega} q(\omega | \mathbf{x}, \psi(\mathbf{x})) \qquad \frac{q(\omega | \mathbf{x}, \psi(\mathbf{x}))}{q'(\omega | \mathbf{x}, \psi(\mathbf{x}))}.$$

$$(2)$$

$$L' - L \ge \frac{1}{|\mathcal{S}|} \frac{\mathbf{X} \ \mathbf{X}}{\mathbf{x} \in \mathcal{S} \ \omega \in \Omega} q(\omega | \mathbf{x}, \psi(\mathbf{x})) \qquad \frac{p'(\mathbf{x} | \omega) p'(\omega | \psi(\mathbf{x}))}{p(\mathbf{x} | \omega) p(\omega | \psi(\mathbf{x}))} .$$
(2)

$$\begin{split} L' - L &\geq \frac{\mathbf{X}}{\omega \in \Omega} \frac{1}{|\mathcal{S}|} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} q(\omega | \mathbf{x}, \psi(\mathbf{x})) - \frac{p'(\mathbf{x} | \omega)}{p(\mathbf{x} | \omega)} \\ &+ \frac{\mathbf{X}}{\omega \in \Omega} \frac{1}{|\mathcal{S}|} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} q(\omega | \mathbf{x}, \psi(\mathbf{x})) - \frac{p'(\omega | \psi(\mathbf{x}))}{p(\omega | \psi(\mathbf{x}))} \geq 0. \end{split}$$

$$(2)$$

$$\mathbf{x} \in \mathcal{S}$$

$$\mathbf{x} \in \mathcal{S}_{\tilde{\omega}}$$

$$L' - L = \frac{\mathbf{X}}{\substack{\boldsymbol{\omega} \in \Omega}} \frac{1}{|\mathcal{S}|} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} q(\boldsymbol{\omega} | \mathbf{x}, \boldsymbol{\psi}(\mathbf{x})) \qquad \frac{p'(\mathbf{x} | \boldsymbol{\omega})}{p(\mathbf{x} | \boldsymbol{\omega})}$$

$$+ \frac{\mathbf{X}}{\substack{\boldsymbol{\omega} \in \Omega}} \frac{|\mathcal{S}_{\tilde{\omega}}|}{|\mathcal{S}|} \frac{\mathbf{X}}{\boldsymbol{\omega} \in \Omega} \frac{1}{|\mathcal{S}_{\tilde{\omega}}|} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}_{\tilde{\omega}}} q(\boldsymbol{\omega} | \mathbf{x}, \tilde{\boldsymbol{\omega}}) \qquad \frac{p'(\boldsymbol{\omega} | \tilde{\boldsymbol{\omega}})}{p(\boldsymbol{\omega} | \tilde{\boldsymbol{\omega}})}.$$

$$(2)$$

$$p'(\omega|\tilde{\omega}) = \frac{1}{|\mathcal{S}_{\tilde{\omega}}|} \mathbf{X}_{\mathbf{x}\in\mathcal{S}_{\tilde{\omega}}} q(\omega|\mathbf{x},\tilde{\omega}), \ \omega \in \Omega, \ \tilde{\omega} \in \Omega$$
(2)

$$p'(\cdot|\omega) = \sum_{p(\cdot|\omega)}^{\mathbf{X}} \frac{1}{|\mathcal{S}|} \sum_{\mathbf{x}\in\mathcal{S}}^{\mathbf{X}} q(\omega|\mathbf{x}, \psi(\mathbf{x})) \quad p(\mathbf{x}|\omega)$$
$$\omega \in \Omega,$$

$$\begin{split} & \mathbf{X}_{\omega \in \Omega} p'(\omega | \tilde{\omega}) - \frac{p'(\omega | \tilde{\omega})}{p(\omega | \tilde{\omega})} \ge 0, \tilde{\omega} \in \Omega, \qquad (0) \\ & \cdot (2) \\ & \frac{1}{|\mathcal{S}|} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} q(\omega | \mathbf{x}, \psi(\mathbf{x})) - p'(\mathbf{x} | \omega) \\ & \ge \frac{1}{|\mathcal{S}|} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} q(\omega | \mathbf{x}, \psi(\mathbf{x})) - p(\mathbf{x} | \omega), \omega \in \Omega, \\ & \mathbf{f} \\ & \frac{1}{|\mathcal{S}|} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} q(\omega | \mathbf{x}, \psi(\mathbf{x})) - \frac{p'(\mathbf{x} | \omega)}{p(\mathbf{x} | \omega)} \ge 0, \omega \in \Omega. \\ & \mathbf{f} \\$$

2.1.1 Gaussian Classes with Noisy Labels

$$p(\mathbf{x}|\omega) = f(\mathbf{x}|\boldsymbol{\mu}_{\omega}, \boldsymbol{\Sigma}_{\omega}), \ \omega \in \Omega, \qquad (2)$$

$$\cdot (2) \qquad \mathbf{f} \qquad \mathbf{f}$$

$$\mathbf{n}_{\boldsymbol{\mu}_{\omega}}, \boldsymbol{\Sigma}_{\omega}' = \frac{\mathbf{x}}{\{\boldsymbol{\mu}_{\omega}, \boldsymbol{\Sigma}_{\omega}\}} \frac{1}{|\mathcal{S}|} \frac{\mathbf{X}}{\mathbf{x} \in \mathcal{S}} q(\omega|\mathbf{x}, \boldsymbol{\psi}(\mathbf{x})) \qquad f(\mathbf{x}|\boldsymbol{\mu}_{\omega}, \boldsymbol{\Sigma}_{\omega})$$

$$\omega \in \Omega.$$
 ()

$$L_{\mu} = \frac{1}{|\mathcal{S}|} \frac{\mathbf{A}}{\mathbf{x} \in \mathcal{S}} \qquad f(\mathbf{x}|\boldsymbol{\mu}) \to \quad \mathbf{x} \Rightarrow \hat{\boldsymbol{\mu}} = \frac{1}{|\mathcal{S}|} \frac{\mathbf{A}}{\mathbf{x} \in \mathcal{S}} \mathbf{x}.$$
 ()

$$q(\mathbf{x}) = \frac{N(\mathbf{x})}{|\mathcal{S}|}, \overset{\boldsymbol{\Lambda}}{\underset{\mathbf{x}\in\mathcal{X}}{\to}} q(\mathbf{x}) = 1, (\mathbf{x}\notin\mathcal{S}\Rightarrow q(\mathbf{x})=0),$$

f

2.1.2 Class-conditional Gaussian Mixtures with Noisy Labels

$$\mathbf{x} \quad \mathbf{x}$$

$$p(\mathbf{x}|\omega) = \frac{\mathbf{X}}{m \in \mathcal{M}_{\omega}} w_{m\omega} f(\mathbf{x}|\mathbf{\mu}_{m\omega}, \mathbf{\Sigma}_{m\omega}),$$

$$\mathbf{x}$$

$$p(\mathbf{x}|\omega) = \frac{\mathbf{X}}{m \in \mathcal{M}_{\omega}} w_{m\omega} f(\mathbf{x}|\mathbf{\mu}_{m\omega}, \mathbf{\Sigma}_{m\omega}),$$

$$\mathbf{x}$$

$$w_{m\omega} = 1, \ \omega \in \Omega$$

$$m \in \mathcal{M}_{\omega} \quad \mathbf{x} \quad \mathbf{f}$$

$$\mathbf{m} \in \mathcal{M}_{\omega} \quad \mathbf{x} \quad \mathbf{f}$$

$$\mathbf{f} \quad \mathbf{f}$$

$$\mathbf{f} \quad \mathbf{f}$$

$$\mathbf{f} \quad \mathbf{f}$$

$$\mathbf{f}$$

$$\mathbf{f}$$

$$\mathbf{f}$$

$$\mathbf{f}$$

$$\mathbf{f}$$

$$\mathbf{f}$$

$$\mathbf{f}$$

$$\mathbf{f}$$

$$\mathbf{f}$$

 \mathbf{f} $h(m,\omega|\mathbf{x},\psi(\mathbf{x}))$

$$\begin{split} h(m, \omega | \mathbf{x}, \psi(\mathbf{x})) \\ &= \mathbf{P} \underbrace{\mathbf{P}_{\omega \in \Omega}^{p(\omega | \psi(\mathbf{x})) w_{mad} f(\mathbf{x} | \mathbf{\mu}_{m\omega}, \mathbf{\Sigma}_{m\omega})}_{m \in \mathcal{M}_{\omega} p(\omega | \psi(\mathbf{x})) w_{mad} f(\mathbf{x} | \mathbf{\mu}_{m\omega}} \end{split}$$

$$p'(\omega|\tilde{\omega}) = \frac{1}{|\mathcal{S}_{\tilde{\omega}}|} \frac{\mathbf{X} \quad \mathbf{X}}{\mathbf{x} \in \mathcal{S}_{\tilde{\omega}} \ m \in \mathcal{M}_{\omega}} h(m, \omega | \mathbf{x}, \tilde{\omega}), \omega \in \Omega, \ \tilde{\omega} \in \Omega.$$

$$()$$

(), ().

3 Related work

x 11 f

x f x f x 0.1,

f . . . -

f

f

$$\begin{array}{cccc} 12 & x & & \\ f & & f & x \\ & & f & \end{array}$$

Table 1 f

1	2000	0	
2	1000	2	2
	10		
	1 0		
	1	1	
	2	22	2
	0	1	2
f	000	21	

f , 1 , 2 f f , 1 , 2 f f , 1 , 2 , 1 , 2 x f f , -, 1 , 2 x f f , -

x f

x f , f , , f

f

4 Experiments and discussion

, , , , , , , , , C C , ,

x 1 f f , , , , f ,

Fig. 5 2 x

Table 2									
						(%)			
		2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[0.	0.00]	1 .00			
	2	20%	$\begin{array}{cccc} 0. & 2 & 0.21 \\ 0.1 & 0. & 02 \end{array}$	[0. 101	0.]	12. 0			

f

f

ff ff f X X f 20 0% ff f ff f f f ff f f X 0% 0% 2 **X** . 20% 2 2

f 0.. 0.. f 1.00% 12.0%, , ff

Table 3	ff					x _	Table 4	ŀ	ff				:	x _
	0	0.1	0.2	0.	0.	0.			0	0.1	0.2	0.	0.	0.
1	0.0	0.0	0.0 1	0.0	0.11	0.22	1		0.0	0.0	0.0	0.1	0.211	0.221
	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.
	0.005	0.003	0.003	0.003	0.030	0.003			0.005	0.005	0.005	0.005	0.026	0.191
2	0.1 2	0.1	0.1	0.1	0. 0	0. 0	2		0.1 2	0.1	0.1	0.1	0.1 2	_
	0.1	0.1	0.1	0.1	0.186	0. 0			0.1	0.1	0.1 2	0.1	0.2	_
	0.1 2	0.1	0.1 2	0.1	0.22	0.1			0.1 2	0.1 2	0.2	0.	0.	_
	0.1	0.1	0.1	0.2	0. 2	0. 2			0.1	0.128	0.1	0.1	0.1	0.504
	0.128	0.120	0.126	0.166	0.1	0.182			0.128	0.128	0.132	0.13	0.144	0. 2
	0.	0.	0. 1	0. 2	0. 1	0.1			0.	0.	0.	0.	0. 2	0. 0
	0.305	0. 0	0.357	0.	0. 0	0. 2			0.305	0.238	0.2	0.	0. 2	0.
	0.	0.238	0.357	0.357	0.500	0.504			0.	0.2 1	0.214	0.25	0.404	0.415
	0.02	0.0	0.1	0.200	0.	0.2			0.02	0.01	0.1	0.1	0.	_
	0.02	0.0	0.033	0.0	0.100	0.08			0.02	0.016	0.016	0.022	0.033	_
	0.013	0.016	0.033	0.05	0.083	0.08			0.013	0.016	0.016	0.022	0.033	_
	0.0	0.12	0.112	0.1	0.2	0. 0			0.0	$0.1 \ 0$	0.112	0.1	0. 0	_
	0.0	0.011	0.044	0.0	0.044	0.0			0.0	0.0	0.0	0.042	0.056	-
	0.033	0.022	0.044	0.033	0.0	0.076			0.033	0.042	0.042	0.042	0.056	_
	0.	0.	0. 1	0.	0.	0.			0.	0.	0.	0.	0. 00	_
	0.	0.	0. 2	0.	0.	0.			0.	0. 20	0. 11	0.	0. 2	-
	0.2 0	0.261	0.2	0.	0. 2	0.			0.2 0	0.2	0. 0	0. 2	0.1	-
	0. 0	0. 2	0. 0	0.	0.	0.			0. 0	0.	0.2 1	0.	0. 2	-
	0.248	0.261	0.261	0.289	0.287	0.271			0.248	0.261	0.261	0.261	0.327	-
	0.130	0.1	0.12	0.1	0.	0.1			0.130	0.163	0.173	0.178	0.1	0.
	0.130	0.183	0.113	0.1	0. 1	0.			0.130	0.163	0.1	0.1	0.1	0.
	0.1	0.1	0.1	0.183	0.2 2	0.			0.1	0.1	0.2 2	0.1	0.	0. 2
	0.2	0.1	0.1	0.1	0.	0.1			0.2	0.1	0.1	0.1	0.	0.2
	0.20	0.183	0.1	0.183	0.188	0.185			0.20	0.1	0.1	0.1	0.163	0.221
£	0.188	0.201	0.223	0.223	0.2 0	0. 12	£		0.188	0.196	0.2	0.	0. 0	-
I	0.2	0.2	0.2	0.2 1	0.2 2	0.2	I		0.2	0.2	0.2 1	0.	0. 00	—
	0.222	0.22	0.2 1	0.2 2	0.244	0.244			0.222	0.22	0.226	0.280	0.296	_
f								f						

Table 5 1 /

	/ /				
1	0/0/	0/0/			
	0/0/	0/0/			
	/0/0	/0/0			
2	0/0/	0/0/			
	1/0/	0/0/			
	0/0/	0/0/			
	0/0/	1/1/			
	/0/1	/1/1			
	0/0/	0/0/			
	1/1/	2/0/			
	/1/1	/0/2			
	0/0/	0/0/			
	0/ /	0/ /1			
	/ /0	1/ /0			
	0/0/	0/0/			
	1/2/	0/2/			
	/2/1	/2/0			
	0/0/	0/0/			
	0/0/	0/0/			
	0/1/	0/0/			
	0/0/	0/0/			
	/1/0	/0/0			
	1/1/	1/2/			
	1/1/	1/2/			
	0/1/	0/0/			
	0/0/	0/0/			
	2/1/	2/0/			
f	/0/2	2/0/			
	0/0/	0/0/			
	2/0/	/0/2			

1.

1

f

ff

ff

5 Experimental results on large-scale datasets

f

f

f

f f f x ff f f X f f 1,000 200 f f 1 X . ff X f , • f f X f 0 2 0, f f X , f f f f f 0% f 0%, 10%, 20%, 0%, 0%, f , 10, . f _ • , (1), (1), (1). (2), , (2), (2). 11 . . f 1 f . 11, (1), (1), (1) f f_ (2), (2), (2) . . 11, f f ()

f

X f X

Table 6 f _

	N	D		-	f	1 f	2
1	1 ,000	200	2 0		2	0	
2	1 ,000	200	0		1	1	
	1 ,000	200	2 0	10			
	1 ,000	200	0	10	1	1	
	1 ,000	200	2 0		0	2	
	1 ,000	200	0			20	

v ff							
A II		0.0	0.1	0.2	0.	0.	0.
<u> </u>	(al) error 1	ate with 5-cross-	-validation on co	orrelated synth1	dataset		
		0. 02	0. 02	0. 02	0.5023	0.5023	0.
		0. 0	0. 0	0. 0	0. 0	0. 0	0.493
		0.	0.4853	0.	0. 00	0.00	0. 0
		0. 2	0. 0	0. 0	0. 01	0. 110	0. 0
		0.4890	0.	0.4953	0.00	0.00	0. 0
	(b1) error i	ate with 10-cros	s-validation on d	correlated synth.	3 dataset		
		0. 0	0. 0	0. 2	0. 2	0. 2	0.492
		0. 0	0. 0	0.	0.	0.	0.
		0.4520	0.4520	0.4520	0.4520	0. 0	0.
		0. 0	0. 0	0.	0. 0	0.	0.
		0. 120	0.	0.	0. 0	0.4827	0.
	(cl) error i	ate with 3-cross-	validation on co	orrelated synth5	dataset		
		0. 0 0	0.00	0.00	0.00	0.00	0.49
		0.	0.0	0.0	0.0	0.0	0.0
		0.4812	0.4812	0.4812	0.4812	0.1	0.1
		0	0	0	0 1	0	0 1
		0	0.0	0.0	0 0	0.4904	0.1
	(a^2) error 1	cate with 5-cross	-validation on w	ncorrelated synt	h? dataset	0.1901	0. 1
	(42) error r	0 0		0 0	0	0 0	0
		0. 2	0. 2	0. 2	0.4427	0.4427	0.
		0.2	0. 2	0. 2	0.112/	0	0.
		0. 2	0. 12	0.3853	0. 0	0.	0.16
		0.1055	0.1105	0.3855	0.	0. 20	0.10
	(b2) arrows	0.2 0	0.2 0	0. 0	0. thA dataset	0. 20	0.2
	(02) error r	0.0420		ncorretatea syn	0 0	0	0
		0.0420	0. 0	0.	0. 0	0.	0. 45
		0. 0	0. 0	0. 0	0. 0	0. 0	0.45
		0. 0	0. 0	0. 0	0. 0	0. 0	0.
		0.0	0.2515	0.2320	0.2155	0.4207	0.
	(-2)	0.0 00	0.2 1	0.	0.	0.	0.
	(c2) error i	ate with 3-cross-	valiaation on ur	icorrelatea synti	no aataset	0	0
		0.0424	0. 2	0. 2	0. 0	0.	0.
		0. 22	0. 22	0. 22	0. 22	0. 22	0.44
		0. 22	0. 22	0. 22	0. 22	0.	0.
		0.0	0.1754	0.1562	0.1902	0.4370	0. 2
		0.0.0	11 / J	1 M / 2	0 2		· · ·

Neural Computing and Applications (2021) 33:1171-1191

6 Conclusion

Compliance with ethical standards

Conflict of interest f f , f , f , , / , f, f , f , , /

References

f 2010, 2 2 (201) K f x 1 11.01 1,201 f (2001) , K (2012) f K 2012, 1 -1 , 2012 ŕ f . K (1) () 100) (. 10. (200) , f $0(12)^{2}$ (2010) 11. x f ()2 0 12. Κ, (201) f 1 0 .0 (201) 1. . f 2 2 (201) x 1. f f 2 11 (201) 1. x 1 0 .120 1. (201) ()11 $11 \ 1$ 1.) (1 1 (1) 0K (200) f 1. X 22() f f 1 2 f (2012) 1. ,K f f f f f 20. K (2001) f , 2()[°]2 20 21. (2000)()2 2 f 22. (1) f f f f 0 (201) f 2. x X 2. K (1) 1 () 0 X 2. (1) f (1) 1 f X (1 2) f 2. X f . K -(.) 1 () 1 1 0

- (201) 2. _ f X 1 0 .0 211 1 . 2. (2020) f 2020 f (201) 2 .K ,K 1 0 .0 f 1, 201 0. (2012) f 2 f 2012, 1 ,2012 0 Κ , , 1. (2012) , X f ()1 1 1 x f ${\scriptstyle \mathbf{f}} \ \ \, {\scriptstyle \mathbf{0}}^{(1)}$ 2. f (1 ·) хf (200) • f f . 1 (10) 1 2 1 ,K f (2012) . f f f 2012, f (1 x) 2() 0 (201) f \dot{f}_2 f
 - , 11 120 , - , - , - , - , - , - , - , - , (200)

- (-) . K f (2010) f 21() 1 0 0. (200) X f f (200), (201) 1. 1 11. 1 2. (201) f f 2 201 , 12 -1 f f X (201)f f (201) f 1 0 .000 1 f_ f (201) 1 0 .021 0 1 (200) f , х 2(11) 2 2 (201)f f
- , // . . . / Publisher's Note f