
ORIGINAL ARTICLE

GMM discriminant analysis with noisy label for each class

Jian-wei Liu1 • Zheng-ping Ren1 • Run-kun Lu1 • Xiong-lin Luo1

Received: 8 June 2019 / Accepted: 13 May 2020 / Published online: 1 June 2020
� Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
Real-world datasets often contain noisy labels, and learning from such datasets using standard classification approaches

may not produce the desired performance. In this paper, we propose a Gaussian Mixture Discriminant Analysis (GMDA)

with noisy label for each class. We introduce flipping probability and class probability and use EM algorithms to solve the

discriminant problem with label noise. We also provide the detail proofs of convergence. Experimental results on synthetic

and real-world datasets show that the proposed approach notably outperforms other four state-of-the-art methods.

Keywords Gaussian mixture models � Label noise � Discriminant analysis � Maximum likelihood estimate

1 Introduction

Noisy label problem has been investigated for a long time

in the machine learning literature, and label-noise robust

algorithms have numerous applications in medical image

processing, spam filtering [1–3], Alzheimer’s disease pre-

diction [1], gene expression classification [4], text pro-

cessing [5–11], and image recognition [12–17]. Noisy

labels are introduced by expert error and other unknown

and unexpected factors. Mislabeled instances may lead to

various potential negative consequences: bias the learning

process, debase the prediction accuracy, and increase

algorithm complexity of inferred models [3, 4] and the

number of necessary labeling training samples, which is

often produced by an expensive and time-consuming hand-

annotation process or inefficient automatic annotation

[1, 2], and increase difficulties in feature selection [18, 19].

The methods to deal with label noise can be classified into

three [1]: (1) The label noise is ignored, and approaches

that are robust to the presence of label noise, such as

ensemble AdaBoost [20] and decision trees [5], are sear-

ched; (2) mislabeled instances are detected and removed,

and then, cleaned training samples [21], [22] are used to

learn; and (3) models considering label noise are designed,

and label noise-tolerant methods are determined. Label

noise-tolerant methods enable researchers to take advan-

tage of noise knowledge and use more sample information

than noise-cleansing methods. The disadvantages are the

increment in algorithm complexity and the increase in the

number of parameters to estimate.

Bootkrajang presented a robust normal discriminant

analysis (rNDA) algorithm [23]. The algorithm solves the

maximum likelihood estimate problem by employing the

expectation maximization (EM) algorithm [24–26]. The

rNDA model assumes that the examples in each class obey

single Gaussian distribution; it is scarcely to verify. Thus,

its performance on datasets that are not strictly Gaussian in

each class seems insufficient.

Numerous studies on GMM have appeared in many

fields, such as outlier mining [27], image processing

[28, 29], clustering [30], and community detection [6]. [27]

devised an approach to adapt to a continuously evolving

outlier distribution. [31] proposed initializing mean vectors

by choosing points with higher concentrations of neighbors

and using a truncated normal distribution for the prelimi-

nary estimation of dispersion matrices. DivideMix models

the per-sample loss distribution with a mixture model to

dynamically divide the training data into a labeled set with

clean samples and an unlabeled set with noisy samples

[28]. [29] addressed noisy labels issue and proposed

selective negative learning and positive learning approach

trained using a complementary label. [30] constructed a

kernel Fisher discriminant (KFD) from training examples
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with noisy labels. [6] presented a procedure for community

detection using GMMs that incorporates certain truncation

and shrinkage effects that arise in the nonvanishing noise

regime.

To solve this problem, we propose a new scheme to

carry out the discriminant analysis with Gaussian mixture

models (GMM) which has the ability to handle the non-

Gaussian distributions. We employ a linear combination of

Gaussian distributions to approximate the probabilistic

distributions in each class and use the EM algorithm to

solve the maximum likelihood estimate [25, 26, 32]. In the

last several decades, researchers in the fields of statistics

and computer vision have been interested in GMM.

The discriminant analysis discussed in this paper uses

GMM to approximate data distributions and is applied to

classification in the case of label noise. Maximum likeli-

hood estimate method is used to determine the parameters.

Moreover, this study derives the updating formulas of the

parameters of the proposed Gaussian Mixture Discriminant

Analysis (GMDA). The performance of GMDA is then

compared with that of AdaBoost, rNDA, rLR, and rmLR

[6] on two synthetic and six real-world datasets. Results

show that our method can effectively and correctly esti-

mate the parameters of both distribution and noise.

Our main contributions are as follows:

1. We propose a general discriminant analysis framework

for attacking the noisy label problem. Different from

previous approach, in this framework, the probabilistic

distribution of each class on real data is captured by

GMM instead of the single Gaussian distribution, and

this single Gaussian assumption for each class is

apparently too harsh to be verified and can scarcely

reflect the actual scenarios.

2. We show that when flipping probability and class

probability are introduced, the parameters of GMDA

model and posterior probability to predict an unlabeled

instance can be computed by using EM algorithm.

3. We provide the detail proofs of convergence for

general situation, e.g., Gaussian classes with noisy

labels and class-conditional Gaussian mixtures with

noisy labels.

4. We have conducted extensive experiments on two

synthetic datasets and six real-life datasets, which have

different properties and scales, to demonstrate the

effectiveness and efficiency of our proposed

formulation.

The rest of this paper is organized as follows: The

proposed GMMs discriminant analysis with noisy label for

each class is formally introduced in Sect. 2, and conver-

gence analysis for general situation, Gaussian classes with

noisy labels, and class-conditional Gaussian mixtures with

noisy labels are presented in Sect. 3, and related work is

presented in Sect. 4. Experimental results using synthetic

and real-world datasets are discussed in Sect. 5. Finally,

the conclusion and future work are summarized in Sect. 6.

1.1 Discriminant analysis based on Gaussian
mixture models

1.1.1 Description of the problem with the noise labels

Considering a statistical decision problem (pattern recog-

nition, classification, and discrimination), we assume that

some real data vectors

x ¼ x1; . . .; xdð Þ 2 X ; X ¼ Rd
� �

have to be classified with respect to a finite set of classes

X ¼ x1;x2; . . .;xKf g. The data vectors x 2 X are sup-

posed to occur randomly according to some unknown

class-conditional pdfs p xjxð Þ and the respective priori class
probabilities p xð Þ; x 2 X.

In case of supervised learning, we are given a training

set Sx for each class x 2 X:

Sx ¼ x 2 Xf g; x 2 X ; S ¼
[

x2X
Sx; Sj j ¼

X

x2X
Sxj j;

where Sj j and Sxj j denote the number of elements in set

Sx. The decision problem can be solved by means of Bayes

decision function by computing the maximum likelihood

estimates of the conditional densities p xjxð Þ. The related

log-likelihood criterion Lx is given by

Lx ¼ 1

Sxj j
X

x2Sx

logp xjxð Þp xð Þ; x 2 Xð Þ;

with normalization coefficient 1= Sxj j included for

convenience.

In case of noisy labels, we assume that the true label

x 2 X of a given observation x 2 S may be randomly

interchanged (flipped, corrupted, substituted), i.e., for each

data vector x 2 S, we are given a unique observed label

~x 2 X, which may differ from the true label x. Obviously,
the probabilities p( ~x) of the observed labels ~x may differ

from the true probabilities p xð Þ of the true labels x.
Assuming randomly substituted labels, we denote that

p xj ~xð Þ is the probability of the true label x given the

observed label ~x. In this sense, the conditional probability

density ~p xj ~xð Þ of x 2 X given an observed label ~x is a

mixture

~p xj ~xð Þ ¼
X

x2X
p xjxð Þp xj ~xð Þ; x 2 X ; ~x 2 X;

and consequently, with the probability p xj ~xð Þ, any of the

classes x 2 X can be the true source of the observation

x 2 X . Note that the probabilities p xj ~xð Þ, x 2 X, p( ~x),
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~x 2 X are generally unknown and have to be estimated

from data.

1.1.2 Gaussian mixture model

Lawrence and Schölkopf [6] proposed a probabilistic

approach to label noise, and Bootkrajang [8, 22] extended

the same model to multi-class case, assuming a Gaussian

density for each class. We propose discriminant analysis

based on GMM where GMM is used to approximate the

probabilistic distribution of each class on real data.

Supposed that the data log-likelihood is:

L ¼ log
Q

x2S
p x ~x; h ~xjð Þp



X

x2X
q xð Þ ¼ e� 1þkG1ð ÞX

x2X
p xjx; hxð Þc ~x;xpx ¼ 1

) kG1
¼ log

X

x2X
p xjx; hxð Þc ~x;xpx � 1:

kG1
is plugged back into (4), and q xð Þ is solved as follows:

q xð Þ ¼
p xjx; hxð Þc ~x;xpxP

x2X
p xjx; hxð Þc ~x;xpx

¼ p x x; ~xjð Þ

ð5Þ

Jensen’s inequality is employed, and the lower bound of

log p x x; hxjð Þ ¼ log
P

m2M wx;mg x x; lx;m;Rx;m



� �
is

derived as

log p x x; hxjð Þ ¼ log
X

m2M
wx;mg x x; lx;m;Rx;m



� �

¼ log
X

m2M
hx;m

wx;mg x x; lx;m;Rx;m



� �

hx;m

�
X

m2M
hx;m log

wx;mg x x;lx;m;Rx;m



� �

hx;m

¼
X

m2M
hx;m logwx;mg x x; lx;m;Rx;m



� �
� log hx;m

� 	

where
P

m2M hx;m ¼ 1. Lagrange multiplier kG2
is intro-

duced again to solve for hx;m, and the corresponding

Lagrange function is as follows:

G2 ¼
X

m2M
hx;m logwx;mg x x; lx;m;Rx;m



� �
� log hx;m

� 	

þ kG2
1�

X

m2M
hx;m

 !

By setting the derivative w.r.t hx;m equal to zero, we

obtain the formula as follows:

logwx;mg x x; lx;m;Rx;m



� �
� log hx;m � 1� kkG2 ¼ 0

) log hx;m ¼ logwx;mg x x; lx;m;Rx;m



� �
� 1� kkG2

) hx;m ¼ wx;mg x x; lx;m;Rx;m



� �
� e

� 1þkkG2

� �

Furthermore, we integrate hx;m and the optimal solution

w.r.t kG2
is:

X

m2M
hx;m ¼

X

m2M
wx;mg x x; lx;m;Rx;m



� �
� e� 1þkG2ð Þ

) kG2
¼ log

X

m2M
wx;mg x x; lx;m;Rx;m



� �
� 1:

We plug kG2
back and solve for hx;m as follows:

hx;m ¼
wx;mg x x; lx;m;Rx;m



� �

P

m2M
wx;mg x x; lx;m;Rx;m



� �

¼ Pr m x;xjð Þ

ð6Þ

As a result, Eqs. (5) and (6) are plugged back to derive the

objective function (7):

Q ¼
X

~x2X
I ~x ¼ xð Þ

X

x2S

X

x2X

p x x; ~xjð Þ �
X

m2M
Pr m x;xjð Þ log

wx;mg x x; lx;m;Rx;m



� �

Pr m x;xjð Þ

( )

þ
X

x2S

X

x2X
p x x; ~xjð Þ log c ~x;x þ

X

x2S

X

x2X
p x x; ~xjð Þ logpx

ð7Þ

The parameters to be estimated are H ¼ hxf gx2X,
C ¼ c ~x;x

� �
~x2X, and P ¼ pxf gx2X, where

hx ¼ wx;m; lx;m;Rx;m
� �

m2M. The EM method is

employed to solve for the parameters.

E step p x x; ~xjð Þ and Pr m x;xjð Þ are calculated accord-

ing to Eqs. (5) and (6), which are listed as follows:

p x x; ~xjð Þ ¼
p x x; hxjð Þc ~x;xpxP

x2X
p xjx; hxð Þc ~x;xpx

ð8Þ

Pr m xn;xn ¼ kjð Þ ¼
wx;mg x x; lx;m;Rx;m



� �

P

m2M
wx;mg x x; lx;m;Rx;m



� � ð9Þ

M step: (7) is optimized to solve for the local optimum of

H ¼ hxf gx2X, C ¼ c ~x;x

� �
~x2X, and P ¼ pxf gx2X.

1.1.3 Updating

Updating rule of lx;m



oQ

oRx;m
¼ �

X

~x2X
I ~x ¼ xð Þ

X

x2S
p x x; ~xjð ÞPr m x;xjð Þf

� R�1
x;m � R�1

x;m x� lx;m
� �

x� lx;m
� �T

R�1
x;m

h io
¼ 0 ) Rx;m

¼
P

~x2X I ~x ¼ xð Þ
P

x2S p x x; ~xjð Þ Pr mjx;xð Þ x� lx;m
� �

x� lx;m
� �T

P
~x2X I ~x ¼ xð Þ

P
x2S p x x; ~xjð ÞPr mjx;xð Þ

ð11Þ

Updating rule of wx;m: A Lagrange multiplier kwx;m is

introduced to guarantee the constraint conditionP
m2M wx;m ¼ 1, and the corresponding Lagrange function

is designed as follows:

Qkwx;m ¼ Qþ kwx;m 1�
X

m2M
wx;m

 !

;

and by setting the derivative of Qkwx;m w.r.t wx;m equal to

zero, we derive the formula as follows:

oQkwx;m

owx;m
¼ 0

¼
X

~x2X
I ~x ¼ xð Þ

X

x2S
p x x; ~xjð Þ Pr mjx;xð Þ 1

wx;m
� kwx;m

) kwx;mwx;m ¼
X

~x2X
I ~x ¼ xð Þ

X

x2S
p x x; ~xjð Þ Pr mjx;xð Þ

)
intergratewx;m

kwx;m

X

m2M
wx;m ¼ kwx;m

¼
X

~x2X
I ~x ¼ xð Þ

X

x2S
p x x; ~xjð Þ

X

m2M
Pr mjx;xð Þ;

and we plug kwx;m back and solve for wx;m as follows:

wx;m ¼
P

~x2X I ~x ¼ xð Þ
P

x2S p x x; ~xjð Þ Pr mjx;xð Þ
P

~x2X I ~x ¼ xð Þ
P

x2S p x x; ~xjð Þ
P

m2M
Pr mjx;xð Þ

ð12Þ

Updating the rule of c ~x;x: A Lagrange multiplier kc ~x;x
is

introduced to guarantee the constraint conditionP
~x2X c ~x;x ¼ 1, and the corresponding Lagrange function

is designed as follows:

Qc ~x;x
¼ Qþ kc ~x;x

1�
X

~x2X
c ~x;x

 !

;

and by setting the derivative of Qc ~x;x
w.r.t c ~x;x equal to

zero, we derive the formula as follows:

oQc ~x;x

oc ~x;x
¼
X

x2S
p x x; ~xjð Þ 1

c ~x;x
� kc ~x;x

¼ 0

) kc ~x;x
c ~x;x ¼

P

x2S
p x x; ~xjð Þ

)
intergratec ~x;x

kc ~x;x

P

~x2X
c ~x;x ¼ kc ~x;x

¼
P

x2S

P

~x2X
p x x; ~xjð Þ

;

and we plug kc ~x;x
back and solve for c ~x;x as follows:

c ~x;x ¼
P

x2S p x x; ~xjð Þ
P

x2S
P

~x2X p x x; ~xjð Þ : ð13Þ

Updating class probability: A Lagrange multiplier kpx is

introduced to guarantee the constraint conditionP
x2X px ¼ 1, and a Lagrange function is designed as

follows:

Q x

¼ Qþ kp x

1�
Qx2

pop x





L0 � L ¼
X

x2X

1

Sj j
X

x2S
q xjx;w xð Þð Þlog p0 xjxð Þp0 xjw(x)ð Þ

p xjxð Þp xjw(x)ð Þ


 �

þ 1

Sj j
X

x2S

X

x2X
q xjx;w xð Þð Þlog q xjx;w xð Þð Þ

q0 xjx;w xð Þð Þ :

ð23Þ

The last sum in Eq. (23) is again the well-known non-

negative Kullback–Leibler information divergence:

I q; q0ð Þ ¼
X

x2X
q xjx;w xð Þð Þlog q xjx;w xð Þð Þ

q0 xjx;w xð Þð Þ � 0; ð24Þ

and therefore, we can write

L0 � L� 1

Sj j
X

x2S

X

x2X
q xjx;w xð Þð Þlog p0 xjxð Þp0 xjw(x)ð Þ

p xjxð Þp xjw(x)ð Þ


 �
:

ð25Þ

Thus, for the sake of the monotonic property of EM

algorithm, we have to guarantee the inequality

L0 � L�
X

x2X

1

Sj j
X

x2S
q xjx;w xð Þð Þlog p

0 xjxð Þ
p xjxð Þ


 �

þ
X

x2X

1

Sj j
X

x2S
q xjx;w xð Þð Þlog p

0 xjw(x)ð Þ
p xjw(x)ð Þ


 �
� 0:

ð26Þ

Here, the sum over x 2 S in the second term can be

decomposed into summing over x 2 S ~x:

L0 � L ¼
X

x2X

1

Sj j
X

x2S
q xjx;w xð Þð Þlog p

0 xjxð Þ
p xjxð Þ


 �

þ
X

~x2X

S ~xj j
Sj j
X

x2X

1

S ~xj j
X

x2S ~x

q xjx; ~xð Þ
" #

log
p0 xj ~xð Þ
p xj ~xð Þ :

ð27Þ

Now, if we define the EM iteration equations in the form

p0 xj ~xð Þ ¼ 1

S ~xj j
X

x2S ~x

q xjx; ~xð Þ; x 2 X; ~x 2 X ð28Þ

p0 �jxð Þ ¼ arg max
p �jxð Þ

1

Sj j
X

x2S
q xjx;w xð Þð Þlogp xjxð Þ

( )

x 2 X;

ð29Þ

then the monotonic property of EM algorithm is guaranteed

because, by substitution (28), the second term in (26) is

nonnegative as a sum of nonnegative Kullback–Leibler

information divergences:

X

x2X
p0 xj ~xð Þ log p

0 xj ~xð Þ
p xj ~xð Þ � 0; ~x 2 X; ð30Þ

and Eq. (29) implies the inequalities

1

Sj j
X

x2S
q xjx;w xð Þð Þ log p0 xjxð Þ

� 1

Sj j
X

x2S
q xjx;w xð Þð Þ log p xjxð Þ;x 2 X;

which can be rewritten in the form:

1

Sj j
X

x2S
q xjx;w xð Þð Þlog p

0 xjxð Þ
p xjxð Þ � 0;x 2 X: ð31Þ

Consequently, the first term in (27) is nonnegative and in

view of the above inequalities (30), (31), the EM iteration

equations in the general form (23), (28), and (29) imply the

basic monotonic property of EM algorithm [25, 26].

2.1.1 Gaussian Classes with Noisy Labels

Assuming a particular type, e.g., Gaussian class-condi-

tional densities

p(xjx) ¼ f ðxjlx;RxÞ; x 2 X; ð32Þ

we can write Eq. (29) in a more specific form

l
0

x;R
0

x

n o
¼ arg max

lx;Rxf g

1

Sj j
X

x2S
q xjx;w xð Þð Þ log f ðxjlx;RxÞ

" #

x 2 X:

ð33Þ

As the maximized expression in Eq. (33) is a weighted

likelihood function, we can easily verify [26] that the

explicit solution can be expressed as a weighted analogy of

the standard maximum likelihood estimate. In particular,

let FðxjlÞ be a probability density with a parameter l

having a standard maximum likelihood estimate l̂:

Ll ¼ 1

Sj j
X

x2S
log f ðxjlÞ ! max ) l̂ ¼ 1

Sj j
X

x2S
x: ð34Þ

If NðxÞ is the number of repeated occurrences of x 2 X in

S and q(x) denotes the relative frequency of x 2 S:

q(x) ¼ NðxÞ
Sj j ;

X

x2X
q(x) ¼ 1; ðx 62 S ) q(x) ¼ 0Þ;

then Eq. (34) can be rewritten equivalently in the form

Ll ¼
X

x2X
q(x) log FðxjlÞ ! max ) l̂ ¼

X

x2X
q(x) x:

ð35Þ

From the comparison of Eqs. (34) and (35), it follows that

the weighted likelihood (35) is maximized by the
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corresponding weighted maximum likelihood estimate (for

a detailed proof in [26]). Consequently, in view of (33), we

can write:

l0x ¼ 1
P

x2S q xjx;w xð Þð Þ
X

x2S
q xjx;w xð Þð Þ x

x 2 X

; ð36Þ

R0
x ¼ 1

P
x2S q xjx;w xð Þð Þ

X

x2S
q xjx;w xð Þð ÞxxT

� l0xl
0T
x; x 2 X:

ð37Þ

We can conclude that the problem of parameter estimation

for the Gaussian classes with noisy labels can be solved by

repeating the EM iteration Eqs. (18), (28), (36), and (37).

2.1.2 Class-conditional Gaussian Mixtures with Noisy
Labels

The Gaussian assumption (32) is well known to be rather

restrictive and can be essentially relaxed by approximating

the unknown class-conditional densities p xjxð Þ by Gaus-

sian mixtures. In particular, we assume

p xjxð Þ ¼
X

m2Mx

wmxf (xjlmx;Rmx),

X

m2Mx

wmx ¼ 1; x 2 X
ð38Þ

where m 2 Mx denotes the component’s index set of the

class-conditional mixture P xjxð Þ. Making substitution (38)

in (19), we obtain the log-likelihood function in the fol-

lowing more general form:

L ¼ 1

Sj j
X

x2S
log

X

x2X

X

m2Mx

p xjw(x)ð Þ wmxf (xjlmx;Rmx)

" #

:

If we introduce the conditional component weights:

h m;xjx;w(x)ð Þ

¼ p xjw(x)ð Þwmxf (xjlmx



Considering the inequality (17), we can write again the EM

iteration equations for the parameters p0 xj ~xð Þ, w0
mx in

explicit form. In particular, the inequality (45) is satisfied if

we set

p0 xj ~xð Þ ¼ 1

S ~xj j
X

x2S ~x

X

m2Mx

h m;xjx; ~xð Þ;x 2 X; ~x 2 X:

ð48Þ

And the second inequality (47) is satisfied if we define the

new component weights w0
mx by equation:

w0
mx ¼ 1

Sj j
X

x2S
h mjx; x;w(x)ð Þ

¼ 1

Sj j
X

x2S

h m;xjx;w(x)ð Þ
P

m2Mx
h m;xjx;w(x)ð Þ m 2 Mx;x 2 X;

ð49Þ

The EM algorithm for the problem of estimating class-

conditional Gaussian mixtures with noisy labels can be

summarized in terms of the iteration Eqs. (39), (44), (46),

(48), and (49).

3 Related work

The problem of discriminant analysis has been studied by

researchers from many disciplines, such as physical, bio-

logical and social sciences, cognitive science, psychology,

engineering, and medicine [34]. Recently, the discriminant

analysis with label noise has gained substantial research

attention. Various solution strategies have been proposed to

prevent a learning algorithm from overfitting the noisy

data, and the robust classifiers with capability to diminish

the effect of label noise to a certain extent have obtained

varying levels of success [9–11, 35–40]. For instance, in

[38], the emphasis functions that combine both sample

errors and their proximity to the classification border are

explored. Long and Servedio demonstrated in [11] that for

a broad class of convex potential functions, any boosting

algorithm was highly susceptible to random classification

noise. They also emphasized that the result was unsuit-

able for non-convex potential function. In [39], a com-

prehensive empirical investigation using neural network

algorithms to learn from imbalanced data with labeling

errors was explored.

Lee and Liu transformed the learning problem with

positive and unlabeled examples into a problem of learning

with noise by labeling all unlabeled examples as negative

and using logistic regression to learn from the weighting

noisy examples [40]. In [41], based on consistency assur-

ance that the label noise ultimately did not hinder the

search for the optimal classifier of the noise-free sample,

the study proved that any surrogate loss function could be

used for classification with noisy labels by using impor-

tance reweighting. [41] also showed that the noise rate that

could be estimated was upper bounded by the conditional

probability of the noisy sample. Bootkrajang and Kabán

built a discriminative model by modeling class noise dis-

tributions and reinterpreted existing discriminative models

from the class noise perspective [8]. They proved that the

error of label-noise robust logistic regression was bounded

and that label-noise robust logistic regression behaved in

the same way as logistic regression when label noise did

not exist or when the label flipping was symmetric. They

also demonstrated that the weighting mechanism of label-

noise robust logistic regression improved upon logistic

regression with asymmetric label flipping. However, in [8],

the loss function did not define the latent true label but

defined the observed noisy label instead. Rooyen et al.

proposed in [12] a convex classification calibrated unhin-

ged loss and proved that it is robust under symmetric label

noise. The loss further avoided minimization of any convex

potential over a linear function class that could result in

classification performance equivalent to random guessing.

In [42], corruption problems that were classified as mutu-

ally contaminated distributions were considered, and

authors argued that optimized balanced error on corrupted

data was equivalently optimized as the binary label error on

clean data.

Based on the boundary conditional class noise assump-

tion, instead of modeling data generation or conditional

class probability both for symmetric and asymmetric cases,

Jun and Cai assumed that the class noise was distributed as

an unnormalized Gaussian and an unnormalized Laplace

centered on the linear class boundary and proposed Gaus-

sian noise model and Laplace noise model, respectively

[13]. They then further reinterpreted logistic regression and

probit regression by using the proposed class noise

probability.

Table 1 Characteristics of the datasets

Dataset Characteristics

Samples Dimensionality Classes

Synth1 2000 30 5

Synth2 1000 2 2

Breast 106 9 6

Iris 150 4 3

Wine 178 13 3

Heart 267 22 2

Boston 506 13 2

Waveform 5000 21 3
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Previous theoretical work on the label noise problem

assumed that the two classes were separable, and the label

noise was independent of the true class label or that the

noise proportions for each class were known [14, 42]

introduced a general mixture proportion estimation

framework for classification with label noise that elimi-

nated these assumptions. When the class-conditional dis-

tributions overlapped and the label noise was not

symmetric, [14, 42] presented assumptions ensuring iden-

tifiability and the existence of a consistent estimator of the

optimal risk and given associated estimation strategies. For

any arbitrary pair of contaminated distributions, a unique

pair of non-contaminated distributions satisfied the pro-

posed assumptions. Scott argued in [15] that a solution to

mixture proportion estimation led to solutions to various

weakly supervised learning problems, such as anomaly

detection, learning from positive and unlabeled examples,

domain adaptation, and classification with label noise. He

established a rate of convergence for mixture proportion

estimation under an appropriate distributional assumption

based on surrogate risk minimization and showed that this

rate of convergence can derive the consistency of the

algorithm and provide a practical implementation of mix-

ture proportion estimation and demonstrate its efficacy in

classification with noisy labels [15].

By modeling the corruption process through a Markov

kernel and defining the corrupted learning problem to be

the corrupted experiment, Brendan and Williamson

developed a general framework for tackling corrupted

learning problems as well as introduced minimax upper

and lower bounds on the risk of learning in the presence of

corruption [43].

Manwani and Sastry study in [44] noise tolerance under

risk minimization. They assume that the actual training set

given to the learning algorithm was obtained from the

noise-free dataset, the class label of each example is cor-

rupted and that a learning method was noise tolerant if the

classifiers learned with noise-free data and with noisy data,

and both have the same classification accuracy on the

noise-free data. They showed that risk minimization under

0–1 loss function was a promising approach for learning

from noisy training data and that Fisher linear discriminant

and linear least squares under squared error loss were noise

tolerant under uniform noise, but not under non-uniform

noise. The risk minimization under other loss functions was

not noise tolerant [16].

A great deal of research has been conducted on both

theory and applications for such label noise problem.

Despite much attention paid to discriminant analysis for

noisy data [17], the investigation focused on the instances

of generating a single Gaussian model. Furthermore,

symmetric and asymmetric label noise was introduced to

describe the contaminated distribution of corrupted binary

labels. However, the instances that belonged to the same

class usually were ruled by multiple GMM because of the

presence of non-Gaussian distribution, which is mixed

proportionally by Gaussian distribution of different means

and variances. However, to the best of our knowledge, the

discriminant analysis with noisy labels based on GMM has

received limited research attention mainly because of

mathematical difficulties. In particular, the commonly used

approaches, such as matrix analysis, are no longer directly

applicable to deal with both symmetric and asymmetric

label noise problem because the presence of asymmetric

label noise cannot be expressed in the normal form. In this

paper, therefore, we intend to tackle such an important yet

challenging problem. [45] presents a novel deep self-

learning framework, which does not rely on any assump-

tion on the distribution of the noisy labels and train a robust

network on the real noisy datasets without extra

supervision.

Similar to our approach, Bouveyron also proposed to use

the explicit global mixture model of more than two classes

[46]; however, Bouveyron’s method is totally different

from our approach. Bouveyron’s approach compares the

supervised information given by the learning data with an





effective. The change of the mixture models centers at

different iterations is illustrated in Fig. 3.

We compare the proposed method to rNDA, AdaBoost,

rLR, and rmLR. As the maximum likelihood used in our

method is totally dependent on the training data, we change

the training sample size from 20 to 80% to determine the

effect of the size of the training data on the performance of

classifiers. Figure 4 shows the effect of the number of

training samples on error rates of the predictions of the

methods. All the methods mentioned are affected by the

number of training samples, and all methods perform best

with 50% samples. We run the following experiments with

50% samples.

Figure 5 shows the original dataset synth2 and the

estimated mixture centers obtained by our method in

comparison with 20% label errors synth2 and its estimated

mean vectors obtained by our method. Table 2 shows the

parameters and the error rates of predictions obtained by

our method using the original dataset synth2 and synth2

with 20% label errors. The diagonal elements cij i ¼ jð Þ
indicate the probability of labels that are not flipped.

Table 2 shows that the unflipped probabilities of original

dataset synth2 are extremely close to 1, whereas that of

20% label errors data are close to 0.8, and the real

probability of each class is 0.5. The estimated class prob-

abilities are all close to 0.5. The results confirm the reality.

The error rates of predictions using the two datasets men-

tioned are 13.00% and 12.60%, respectively, which differ

slightly. In the noisy case, prediction is better than the

original case because our method has already considered

flipping.

Figure 6 shows the results of two synthetic datasets and

six real-world datasets using the proposed method and the

other four methods mentioned. All results are presented in

Tables 3, 4, and 5. The trend is that at a higher label noise

level, a higher prediction error rate is obtained. The Ada-

Boost method, which is a label-noise robust method, is

affected most by the label errors and has mostly the largest

error rate. The rLR and the rmLR methods have similar

performance. The proposed method has a much better

performance and the lowest error rate in most cases and

outperforms others mostly both in the symmetric and

asymmetric noise cases. The AdaBoost, rLR, and rmLR

methods cannot predict when samples of one class label are

all flipped in binary cases.

On the other hand, Fig. 6 also shows that the proposed

method significantly outperforms other methods on syn-

thetic datasets synth1 with larger dimension. We run

-20 -15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

20

(a) Original dataset synth2 (b) Dataset synth2 with 20% label errors 

Fig. 5 Dataset synth2 and estimated mixture centers obtained by using the proposed method

Table 2 Results on dataset

synth2 using the proposed

method

Dataset Results

Flipping probability Class probability Error rate (%)

Original synth2 1 2:49e� 05

3:03e� 04 1


 �
0:4994 0:5006½ � 13.00

Synth2 with 20% label error 0:7825 0:2175
0:1977 0:8023


 �
0:5101 0:4899½ � 12.60
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another experiment to determine the effect of the dimen-

sion of the datasets. We create a set of datasets consisting

of 1000 samples, three classes, and dimension from 5 to 30.

Then, 20% label errors are artificially injected into these

datasets.

Figure 7 shows the results on different datasets with

different dimensions using different methods. The trend is

that with a higher dimension, a lower error rate is obtained.

The proposed method performs much better than the others

in all dimensionality cases.

We employ a set of synthetic datasets to study the effect

of the mixture number of the datasets and that of the

component number of the model. Each dataset contains

1000 samples with ten dimensions and comprises three

classes, component numbers from 1 to 5 for each class.

Figure 7 shows that the more components in each class the

dataset has, the larger the error rate is. In almost all cases,

the proposed method notably outperforms the other

methods.

According to Fig. 6 and Tables 3, 4, and 5, our method

achieves better performance in a multi-class case than in a

two-class case. We run one more experiment to investigate

the effect of the number of classes. Datasets used are

created artificially as well; they all contain 1000 samples

Table 3 Prediction error rate on two synthetic datasets and six real-

world datasets with different symmetric label noise rates

Dataset Method Symmetric label noise rate

0 0.1 0.2 0.3 0.4 0.5

Synth1 Ada 0.03 0.056 0.061 0.078 0.116 0.224

rNDA 0.035 0.064 0.064 0.065 0.065 0.065

GMDA 0.005 0.003 0.003 0.003 0.030 0.003

Synth2 rmLR 0.142 0.138 0.138 0.184 0.504 0.504

rLR 0.147 0.138 0.138 0.17 0.186 0.504

Ada 0.142 0.14 0.142 0.184 0.226 0.318

rNDA 0.138 0.138 0.138 0.266 0.524 0.532

GMDA 0.128 0.120 0.126 0.166 0.19 0.182

Issue

Breast

Ada 0.396 0.333 0.381 0.523 0.571 0.619

rNDA 0.305 0.404 0.357 0.5 0.504 0.542

GMDA 0.377 0.238 0.357 0.357 0.500 0.504

Iris Ada 0.026 0.05 0.183 0.200 0.333 0.233

rNDA 0.026 0.033 0.033 0.05 0.100 0.08

GMDA 0.013 0.016 0.033 0.05 0.083 0.08

Wine Ada 0.078 0.123 0.112 0.157 0.236 0.606

rNDA 0.044 0.011 0.044 0.044 0.044 0.078

GMDA 0.033 0.022 0.044 0.033 0.045 0.076

Heart rmLR 0.548 0.654 0.691 0.737 0.6 0.5

rLR 0.533 0.635 0.672 0.7 0.65 0.6

Ada 0.270 0.261 0.299 0.537 0.32 0.537

rNDA 0.609 0.626 0.607 0.637 0.39 0.7

GMDA 0.248 0.261 0.261 0.289 0.287 0.271

Boston rmLR 0.130 0.138 0.128 0.193 0.336 0.514

rLR 0.130 0.183 0.113 0.188 0.316 0.638

Ada 0.17 0.158 0.163 0.183 0.292 0.549

rNDA 0.233 0.198 0.198 0.198 0.445 0.717

GMDA 0.205 0.183 0.188 0.183 0.188 0.185

Wave

form

Ada 0.188 0.201 0.223 0.223 0.290 0.312

rNDA 0.293 0.248 0.249 0.251 0.252 0.253

GMDA 0.222 0.228 0.231 0.232 0.244 0.244

The best performances are indicated in the bold

Table 4 Prediction error rate on two synthetic datasets and six real-

world datasets with different asymmetric label noise rates

Dataset Method Asymmetric label noise rate

0 0.1 0.2 0.3 0.4 0.5

Synth1 Ada 0.03 0.073 0.085 0.138 0.211 0.221

rNDA 0.035 0.035 0.067 0.067 0.065 0.79

GMDA 0.005 0.005 0.005 0.005 0.026 0.191

Synth2 rmLR 0.142 0.138 0.148 0.138 0.192 -

rLR 0.147 0.138 0.142 0.134 0.23 -

Ada 0.142 0.142 0.296 0.468 0.494 -

rNDA 0.138 0.128 0.144 0.144 0.148 0.504

GMDA 0.128 0.128 0.132 0.13 0.144 0.52

Breast

Issue

Ada 0.396 0.333 0.357 0.343 0.452 0.509

rNDA 0.305 0.238 0.285 0.437 0.523 0.5

GMDA 0.377 0.261 0.214 0.25 0.404 0.415

Iris Ada 0.026 0.016 0.183 0.177 0.433 -

rNDA 0.026 0.016 0.016 0.022 0.033 -

GMDA 0.013 0.016 0.016 0.022 0.033 -

Wine Ada 0.078 0.140 0.112 0.197 0.408 -

rNDA 0.044 0.056 0.056 0.042 0.056 -

GMDA 0.033 0.042 0.042 0.042 0.056 -

Heart rmLR 0.548 0.448 0.336 0.355 0.700 -

rLR 0.533 0.420 0.411 0.336 0.672 -

Ada 0.270 0.299 0.307 0.392 0.719 -

rNDA 0.609 0.364 0.271 0.364 0.729 -

GMDA 0.248 0.261 0.261 0.261 0.327 -

Boston rmLR 0.130 0.163 0.173 0.178 0.198 0.336

rLR 0.130 0.163 0.183 0.173 0.193 0.347

Ada 0.17 0.178 0.262 0.415 0.485 0.442

rNDA 0.233 0.198 0.198 0.198 0.445 0.233

GMDA 0.205 0.168 0.183 0.183 0.163 0.221

Wave

form

Ada 0.188 0.196 0.286 0.339 0.390 -

rNDA 0.293 0.23 0.231 0.493 0.500 -

GMDA 0.222 0.227 0.226 0.280 0.296 -

The best performances are indicated in the bold
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with ten dimensions. Figure 8 shows that our proposed

method is affected much less than the other methods.

Our previous experiments on synthetic datasets have

been conducted on the premise of taking the correct mix-

ture number. In this paper, we tested the datasets using an

invalid mixture number. We take a three-component

dataset as a representative and set the component number

of the model from 1 to 6. From Figs. 9 and 10, we can

discern that an invalid mixture number makes an increment

on error rate, whereas rNDA and AdaBoost have error rates

of 0.5040 and 0.4660, respectively. Our method still per-

forms remarkably better even when an invalid mixture

number is used. Poor performance is expected when the

number of the component is 1.

The EM method we employed finds the local optimum

each time; the initial cluster center is significant. The initial

values used in this paper are obtained by k-means method,

which is very sensitive to initial cluster centers. A bad

initial cluster center leads to poor cluster performance and

affects the error rate of the proposed method. Moreover,

the difference between samples in the same class is much

smaller than that between classes; thus, obtaining proper

initial values for our method is difficult. The mixture model

proposed in this paper is finite; the number of mixture

components is provided in advance and cannot be changed

to adapt to a simpler or more complicated situation. Thus,

the estimation of the number of components and adapted

mixture number remains to be studied.

5 Experimental results on large-scale
datasets

To verify the performance of our proposed approach on

large-scale datasets, we employ six synthetic datasets to

study the effect of the mixture number of the datasets and

that of the component number of the model. Each dataset

contains 15,000 samples with 200 dimensions and com-

prises two classes, component numbers from 1 to 5 for each

class. The six datasets together with their sizes N and

number of features D are listed in Table 6. More specifi-

cally, first, we randomly generate six synthetic datasets for

verification goal. The dataset is a mixture of two types of

labels, with the covariance range from 0 to 250, which

means that the correlation between these two types of

labels is from uncorrelation to the maximum correlation.

Similarly, for the division of datasets according to Table 6,

we have carried out tenfold, fivefold, and threefold cross-

validation, respectively. In addition, we add noise labels

based on 0%, 10%, 20%, 30%, 40%, and 50% of the total

number of labels. Table 7 shows the error rate with 5, 10,

and 3 cross-validation for all comparison methods. In

Table 7, (a1), (b1), and (c1) summarize the error rates on

synthetic datasets with label correlation group, and (a2),

(b2), and (c2) summarize the error rates on synthetic

datasets with label uncorrelation group. Figure 11 shows

the learning performances for all comparison methods;

similarly, in Fig. 11, (a1), (b1), and (c1) are the learning

performances on synthetic datasets with label correlation

group, and (a2), (b2), and (c2) are the learning perfor-

mances on synthetic datasets with label uncorrelation

group.

From Table 7 and Fig. 11, we can see that:

(a) The number of these two types of tags in synthetic

datasets is comparable to each other. They belong to

the synthetic datasets with relatively balanced class

Table 5 Win/draw/lose

Dataset Method Win/draw/lose

Symmetric Asymmetric

Synth1 Ada 0/0/6 0/0/6

rNDA 0/0/6 0/0/6

GMDA 6/0/0 6/0/0

Synth2 rmLR 0/0/6 0/0/6

rLR 1/0/5 0/0/6

Ada 0/0/6 0/0/6

rNDA 0/0/6 1/1/4

GMDA 5/0/1 4/1/1

Breast

Issue

Ada 0/0/6 0/0/6

rNDA 1/1/4 2/0/4

GMDA 4/1/1 4/0/2

Iris Ada 0/0/6 0/0/5

rNDA 0/3/3 0/4/1

GMDA 3/3/0 1/4/0

Wine Ada 0/0/6 0/0/5

rNDA 1/2/3 0/2/3

GMDA 3/2/1 3/2/0

Heart rmLR 0/0/6 0/0/5

rLR 0/0/6 0/0/5

Ada 0/1/5 0/0/5

rNDA 0/0/6 0/0/5

GMDA 5/1/0 5/0/0

Boston rmLR 1/1/4 1/2/3

rLR 1/1/4 1/2/3

Ada 0/1/5 0/0/6

rNDA 0/0/6 0/0/6

GMDA 2/1/3 2/0/4

Wave form Ada 4/0/2 2/0/3

rNDA 0/0/6 0/0/5

GMDA 2/0/4 3/0/2
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Fig. 6 continued
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Fig. 7 Effect of the dimension of datasets
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components of the model (the

number of dataset mixtures is 3)
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size and large sample size, and it has certain

representativeness.

(b) When the characteristics difference between the two

classes is small, that is, the covariance between two

classes is equal to 250, the effect of the increase in

noise labels is not very obvious. Compared with

other methods, the GMDA has a certain capability of

noise resistance, and its error rate is up and down at

50%. Secondly, with the increase in noise tags, the

error rate of the GMDA decreases by about 1%.

Similar to the GMDA, under these synthetic datasets,

the other comparison algorithms also fluctuate at

specific values. We suspect that this is caused by the

randomly generated synthetic datasets, and this small

fluctuation does not affect the evaluation of the noise

resistance performance of various models.

(c) When the characteristics difference between the two

classes is large, that is, the covariance between two

classes is equal to 0, the addition of noise tags has

different degrees of impact on these algorithms.
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Fig. 10 Effect of the number of

classes

Table 6 Characteristics of the large-scale datasets

Dataset Characteristics

N D Covariance Cross-validation Number of samples in class 1 Number of samples in class 2

Synth1 15,000 200 250 5 7592 7408

Synth2 15,000 200 0 5 6619 8381

Synth3 15,000 200 250 10 8434 6566

Synth4 15,000 200 0 10 6619 8381

Synth5 15,000 200 250 3 7707 7293

Synth6 15,000 200 0 3 7796 7204
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Generally speaking, the more the noise tags are, the

higher the classification error rate is. But when we

look the label noise rate at the interval [0.2, 0.4],

these algorithms all are with good anti-noise perfor-

mance and have ability of active noise cancelation. It

is worthy of note that ADA algorithm is different

from the trend curve of other algorithms. When the

difference between the two kinds of tags is small, the

fluctuation is large. When the difference between the

two kinds of tags is large, the fluctuation is small.

We can choose the appropriate algorithm according

to the actual dataset.

In sum up, when the characteristics difference between

the two classes in mixture model is obvious, it is mean-

ingful to analyze and compare the experimental results.

Whereas the correlation between the two classes in mixture

model is large, the effect of the increase in noise labels is

vague and limited. As increase in noise labels, prediction

error rate does not change much.

Table 7 Experimental results in

error rate on six different

correlated synthetic datasets

with different cross-validation

processes

Method Label noise rate

0.0 0.1 0.2 0.3 0.4 0.5

(a1) error rate with 5-cross-validation on correlated synth1 dataset

GMDA 0.5023 0.5023 0.5023 0.5023 0.5023 0.4977

rNDA 0.5063 0.5063 0.5063 0.5063 0.5063 0.4937

Ada 0.4953 0.4853 0.4997 0.5007 0.5090 0.5047

rLR 0.4927 0.4907 0.5057 0.5017 0.5110 0.5087

rmLR 0.4890 0.4877 0.4953 0.5080 0.5080 0.5090

(b1) error rate with 10-cross-validation on correlated synth3 dataset

GMDA 0.5073 0.5073 0.4927 0.4927 0.4927 0.4927

rNDA 0.5067 0.5067 0.4933 0.4933 0.4933 0.4933

Ada 0.4520 0.4520 0.4520 0.4520 0.5480 0.5480

rLR 0.5033 0.5087 0.4973 0.4807 0.4867 0.4947

rmLR 0.5120 0.4987 0.4973 0.4740 0.4827 0.4967

(c1) error rate with 3-cross-validation on correlated synth5 dataset

GMDA 0.5060 0.5060 0.5060 0.5060 0.5060 0.4938

rNDA 0.4944 0.5056 0.5056 0.5056 0.5056 0.5056

Ada 0.4812 0.4812 0.4812 0.4812 0.5188 0.5188

rLR 0.4838 0.4956 0.4884 0.4818 0.4934 0.5144

rmLR 0.4846 0.4908 0.4904 0.4950 0.4904 0.5152

(a2) error rate with 5-cross-validation on uncorrelated synth2 dataset

GMDA 0.5570 0.5570 0.5570 0.5577 0.9640 0.5570

rNDA 0.4427 0.4427 0.4427 0.4427 0.4427 0.4427

Ada 0.4427 0.4427 0.4427 0.5573 0.5573 0.4427

rLR 0.1653 0.1103 0.3853 0.5573 0.9483 0.1653

rmLR 0.2730 0.2730 0.4303 0.5477 0.7920 0.2730

(b2) error rate with 10-cross-validation on uncorrelated synth4 dataset

GMDA 0.0420 0.5440 0.5453 0.5440 0.5473 0.9613

rNDA 0.4560 0.4560 0.4560 0.4560 0.4560 0.4560

Ada 0.4560 0.4560 0.4560 0.4560 0.5440 0.5440

rLR 0.0647 0.2313 0.2320 0.2133 0.4267 0.9353

rmLR 0.0600 0.2313 0.3453 0.3733 0.4473 0.9400

(c2) error rate with 3-cross-validation on uncorrelated synth6 dataset

GMDA 0.0424 0.5572 0.5572 0.5570 0.5673 0.9628

rNDA 0.4422 0.4422 0.4422 0.4422 0.4422 0.4422

Ada 0.4422 0.4422 0.4422 0.4422 0.5578 0.5578

rLR 0.0754 0.1754 0.1562 0.1902 0.4370 0.9264

rmLR 0.0708 0.2686 0.2376 0.3258 0.4577 0.9112

The best performances are indicated in the bold

1188 Neural Computing and Applications (2021) 33:1171–1191

123



0.52

0.515

0.51

0.505

0.5

0.495

0.49

0.485
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Noisy label rate on the synth1 data set

Noisy label rate on the synth3 data set

Noisy label rate on the synth5 data set

Noisy label rate on the synth2 data set

Noisy label rate on the synth4 data set

Noisy label rate on the synth5 data set

(a1) correlatedsynth1 dataset

0.56

0.54

0.52

0.5

0.48

0.46

0.44
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

(b1) correlated synth3 dataset

E
rr

or
ra

te
GMDA
rNDA
Ada
rLR
rmLR

E
rr

or
ra

te

rLR

GMDA
rNDA
Ada

rmLR

0.525

0.52

0.515

0.51

0.505

0.5

0.495

0.49

0.485

0.48

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

(c1) correlatedsynth5 dataset

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

(a2) uncorrelatedsynth2 dataset

E
rr

or
ra

te

GMDA
rNDA
Ada
rLR
rmLR

E
rr

or
ra

te

GMDA
rNDA
Ada
rLR
rmLR

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0



6 Conclusion

This paper presented a discriminant analysis based on

Gaussian mixture models and applied to classification in

the presence of label noise. We derived the updating for-

mulas of the parameters. The experiments on two synthetic

datasets and several real-world datasets showed that the

proposed method was convergent and effective and mostly

outperformed the other methods. Compared with the other

methods, our method was less affected by the factors dis-

cussed in the preceding sections.

We found that the number of training samples affected

the performance significantly, that is, the number of

training samples is increased if necessary. If the samples

were insufficient for maximum likelihood to estimate,

Bayes estimation was used, where prior information was

utilized, or domain adaptation learning was used, where a

source dataset that was akin to a target dataset was used to

help.

The number of components of a model given in advance

may not be adapted to all the classes; it might lead to

further calculation on a simpler case or less approximation

on a more complicated case. Therefore, we considered a

more flexible and adaptable infinite mixture model that

estimates the hidden number of components from the

training datasets.
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20. Rätsch G, Onoda T, Müller K (2001) Soft margins for AdaBoost.

Mach Learn 42(3):287–320

21. Wilson DR, Martinez TR (2000) Reduction techniques for

instance-based learning algorithms. Mach Learn 38(3):257–286

22. Brodley CE, Friedl MA (1996) Identifying and eliminating mis-

labeled training instances. In: Proceedings of the thirteenth

national conference on artificial intelligence and eighth innova-

tive applications of artificial intelligence conference, AAAI 96,

Portland, Oregon: AAAI Press, pp. 799–805

23. Bootkrajang J (2013) Supervised learning with random labelling

errors. University of Birmingham, Birmingham

24. Moon TK (1996) The expectation-maximization algorithm. IEEE

Signal Process Mag 13(6):47–60

25. Dempster AP, Laird NM, Rubin DB (1977) Maximum Likeli-

hood from Incomplete Data via the EM Algorithm. J R Stat Soc

Ser B 39(1):1–38
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