
Future Generation Computer Systems 113 (2020) 474–487

o
l
a
t
a
l
a
s
o

(

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

PFPMine: A parallel approach for discovering interacting data entities
in data-intensive cloud workflows
Yuze Huang a, Jiwei Huang b,c,∗, Cong Liu d, Chengning Zhang e

a School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
b Department of Computer Science and Technology, China University of Petroleum-Beijing, Beijing 102249, China
c Beijing Key Laboratory of Petroleum Data Mining, China University of Petroleum-Beijing, Beijing 102249, China
d College of Computer Science and Technology, Shandong University of Technology, Zibo 255300, China
e Grab Company, Singapore 573972, Singapore

a r t i c l e i n f o

Article history:
Received 25 December 2019
Received in revised form 2 June 2020
Accepted 7 July 2020
Available online 11 July 2020

Keywords:
Data entity discovery
MapReduce
Data-intensive workflow
Cloud computing

a b s t r a c t

With the evolution of cloud computing, communities and companies deployed their workflows on
cloud to support end-to-end business processes that are usually syndicated with other external
services. To improve the efficiency of the system as well as reducing energy consumption, data
placement and backup strategies should be carefully designed. One of the most challenging problems
is the discovery of interacting data entities in date-intensive workflows. To tackle this challenge,
this paper presents a frequent pattern-based approach named FPMine for interacting data entity
discovery in cloud workflows. A direct discriminative mining algorithm is first proposed to determine
the minimum support threshold, based on which FP-tree is constructed to formulate the frequent
item pairs. Next, FP-matrix is applied to avoid traversing the FP-trees during data entity discovery,
and a pruning approach is introduced to reduce the redundancy of frequent item pairs. Furthermore,
we propose a parallel data entity mining algorithm using MapReduce framework, namely PFPMine,
and then design a primitive data placement and backup strategy. Finally, we evaluate the efficiency
of our approach by experiments using real-life data, based on which we show that our approach can
facilitate the discovery of interacting data entities with efficiency for cloud workflows. Comparing with
traditional FP-growth approach, we pay only a multiplicative factor for making our approach able to
extract fine-grained frequent item pairs rather than frequent patterns, which can bring significant
advantages to data placement. After parallelization, the PFPMine algorithm performs better with high
efficiency for both sparse datasets and dense datasets than FP-growth. The results show that PFPMine
can reduce the running time by at least 25%, and preforms with significantly higher efficiency than
FP-growth approach.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

With the rapid development of the Internet, large volumes
f data, both structured and unstructured, are processed, ana-
yzed, and stored for various applications. Data-intensive systems
re widely used to deal with large amount of data to support
he rapidly changed complex business goal [1]. They have been
pplied in different applications, such as sensor-based data col-
ection and analytics [2], intelligent transportation systems [3],
nd cyber-physical systems [4] etc.. Applications in data-intensive
ystem can be formulated by a serial of business processes, each
f which accomplishes one piece of sub-task and composes to

∗ Corresponding author.
E-mail addresses: huangyz@cqjtu.edu.cn (Y. Huang), huangjw@cup.edu.cn

J. Huang), liucongchina@sdust.edu.cn (C. Liu).
https://doi.org/10.1016/j.future.2020.07.018
0167-739X/© 2020 Elsevier B.V. All rights reserved.
a complete workflow. In such cases, both procedures and data
should be jointly considered.

At the very beginning, most traditional research on workflow
modeling and implementation focused on control flow instead
of data flow issues, lacking the ability to formulate the opera-
tions (read, write, add, remove, etc.) of global data during the
procedures of the design and implementation for systems. With
the emergence of data-intensive applications and systems, novel
data-aware (also called data-centric) business process models
have been proposed to fill this gap [5]. A notable exponent named
artifact-centric model was produced by IBM researchers [6]. In
such model, data entity (also called business entity or artifact)
records the core information for business operations. It is well-
known that the data entities which are manipulated by services
are not independent, since they always interact with each other
during the execution of the business process.

https://doi.org/10.1016/j.future.2020.07.018
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2020.07.018&domain=pdf
mailto:huangyz@cqjtu.edu.cn
mailto:huangjw@cup.edu.cn
mailto:liucongchina@sdust.edu.cn
https://doi.org/10.1016/j.future.2020.07.018

Y. Huang, J. Huang, C. Liu et al. / Future Generation Computer Systems 113 (2020) 474–487 475

t
b
d
a
t
b
b
t
t

b
v
i
s
b
o
a
a
A
p
a
2
b
g
d
t
d
w
f
w

f
a
t

d

w

Cloud computing is able to deliver computing as well as stor-
age resources as a kind of public facility [7], and it brings signif-
icant efficiency to workflows due to the high utilization of the
resources [8]. With the development of cloud computing, more
and more communities have deployed their workflows into the
cloud environment. However, for workflows that provide support
for data-aware business processes, some new challenges have
caught wide concern.

Data placement is one of the most urgent issues that need
to be solved in cloud workflows [9]. Many applications that
collaborate with different organizations or services have to deal
with data that is geographically dispersed in different data cen-
ters [10–13]. Data manipulations that involve different data cen-
ters require a large amount of data communication which is quite
resource-consuming and time-consuming. Hence, after the devel-
opment of workflow, we should design data placement strategy
to move the data items closer to the geo-distributed organizations
while reducing the communication overhead [14]. Another chal-
lenge in cloud workflows is data backup. Since the requirements
on reliability and security of both services and data are growing
rapidly in cloud applications, backup data brings more and more
workload to data centers [15]. It has been reported by Facebook
that there have been nearly one trillion posts available on its web-
sites involving a significantly large amount of data storage in the
underlying data centers.1 Recently, another official report posted
by Alibaba which is one of the biggest online merchants in China
showed incredible numbers in e-commerce.2 It has been recorded
hat a total of 7.4 billion mobile interactions were processed
y their systems at the peak rate of 175,000 orders per second
uring the 24-hour online sale on Nov. 11, hitting a new record
s $17.79 billion in gross merchandise volume (GMV). All of
hese show the impossibility for backuping all the data in cloud-
ased workflow without distinction. Furthermore, data entities in
usiness processes may be with different importance levels, and
hus the data entity backup strategy should be carefully designed
o achieve the cost-effectiveness.

To solve these problems, the data in business processes should
e considered differently according to its importance and in-
olved activities. Therefore, as a foundation for managing data
n cloud workflow, interacting data entities in business processes
hould be precisely discovered to provide theoretical support for
oth data placement and backup. Due to the discovered results
btained by our approach, interacting data entities are placed into
data center based on the capacity constraint of data center,

nd thus the communication overhead is reduced accordingly.
lthough several researches have been dedicated to solving data
roblems in reality, few of them focused on data entity discovery,
nd thus the fine-grained frequent item pairs (also called frequent
-itemsets) of the data affiliated to business processes cannot
e precisely extracted. We also noticed that the traditional FP-
rowth algorithm [16] cannot discover the frequent 2-itemsets
irectly, although some Apriori-like algorithms that can obtain
he frequent item pairs by join arithmetic, large number of redun-
ancy itemsets can be generated during the discovery procedure,
hich may cost large amount of time and resources [17]. There-

ore, an algorithm for discovering the frequent 2-itemsets in cloud
orkflow directly should be carefully designed.

In this paper, a frequent pattern based approach is presented
or discovering interacting data entities in cloud workflows. In our
pproach, an algorithm is produced to discover the discrimina-
ive frequent 2-itemsets directly. This algorithm determines the

1 https://techcrunch.com/2014/12/28/mining-the-hive-mind/.
2 http://www.alizila.com/infographic-double-11-sales-and-engagement-

soar/.
 F
minimum support threshold at first, then, an additional struc-
ture is constructed to record the frequency information of the
dataset, based on which the algorithm discovers the discrimi-
native itemsets with interestingness measure technique. Finally,
we parallelize the algorithm using MapReduce framework, with
which the efficiency of our approach is improved significantly.
Specifically, the contributions of this paper can be described as
the following threefold.

• A frequent pattern based approach is proposed to discover
interacting data entities. In this approach, an algorithm
named FPMine is proposed, which determines the minimum
support threshold automatically at first, and then FP-tree
and FP-matrix are constructed to improve the efficiency of
our algorithm.
• A pruning algorithm with interestingness measure is pro-

duced to search the discriminative frequent 2-itemsets,
which cannot generate the redundancy frequent itemsets.
• A parallel algorithm, called PFPMine, is proposed. This ap-

proach parallelizes the FPMine algorithm using MapReduce
framework, based on which the efficiency of our approach
is improved significantly.

The rest of this paper is organized as follows. Section 2 intro-
duces the basic definitions and background information. Section 3
presents an overall framework for the data entity discovery pro-
cess, and then a frequent pattern based algorithm is produced in
this section. Section 4 proposes the frequent pattern based paral-
lel mining algorithm using MapReduce framework to improve the
performance. A primitive data placement and backup strategy is
presented to investigate the benefits of our approach in Section 5.
Furthermore, the computational complexity of our algorithms
and the experimental results are shown in Section 6. Finally, the
related work of this research is introduced in Section 7, and then
we conclude this paper in Section 8.

2. Preliminaries

In this section, we present the fundamental concepts and
definitions of this paper, which are the notion of workflow event
log and the definition of frequent itemsets in business process.

The input of our approach is the workflow event log, which
records the execution status of the workflow. Table 1 gives an
example of the workflow event log of an online shopping process.
The workflow event log indicates the specific information of the
workflow execution status. We noticed that a workflow event log
consists of numerous cases (also called transactions), and each
case consists of numerous services (also called events) such that
each service relates to precisely one case. Services within a case
are ordered [18]. Formally, we define the workflow event log as
Definition 1.

Definition 1 (Workflow Event Log). A workflow event log EL is
efined by a 5-tuple C ≜ (Cid, Sid, TS,

∏
,
∑

) where,

• Cid is the nonempty set of cases ID.
• Sid is the nonempty set of services ID.
• TS is the finite serial of time-stamps, which is used to sort

the services in the logs.
•

∏
is the finite serial of services, in which each service

corresponds to a service ID.
•

∑
is the finite serial of data attributes, which involved by

the services.

Table 2 shows the compact representation of a workflow log,
here each case is represented by a sequence of data attributes.
or brevity, we transformed the data attributes into single-letter

https://techcrunch.com/2014/12/28/mining-the-hive-mind/
http://www.alizila.com/infographic-double-11-sales-and-engagement-soar/
http://www.alizila.com/infographic-double-11-sales-and-engagement-soar/

Y. Huang, J. Huang, C. Liu et al. / Future Generation Computer Systems 113 (2020) 474–487 477

r

O

i
d
f
t
t
w
t
i
f
b
s

D

1

where k ∈ {1, 2, . . . , N} is the frequency rank, N ∈ {1, 2, . . .} is
the number of elements, and s ≥ 1 is the value of the exponent
characterizing the distribution. In light of the characters of Zipf
distribution, we assume p is the proportion of the minimum
support threshold. When s is fixed, p can be obtained by solving
the following equation.

F (pN, N, s) =

∑pN
n=1

1
ns∑N

n=1
1
ns

= 1− p (2)

The procedures for determining the minimum support thresh-
old are illuminated in Algorithm 1. Firstly, the workflow log is
scanned to obtain the frequency of each data attribute. Secondly,
we rank the items in a descending order. Finally, p can be cal-
culated according to Eq. (2), and then min_sup = F⌊pN⌋, where
min_sup represents the minimum support threshold, and F⌊pN⌋
epresents the frequency of item ⌊pN⌋.

Algorithm 1 Algorithm for Determining Minimum Support
Threshold
Input: Workflow Log EL

utput: Minimum Support Threshold min_sup
1: Scan the workflow log to get the frequency of each data

attribute
2: Rank the items in descending order
3: Calculate p by Eq. (2). and then the minimum support

threshold can be obtained according to min_sup = F⌊pN⌋

3.3. FP-tree with FP-matrix construction

FP-growth [16] is a classical algorithm for mining frequent
temsets. Its basic idea is to traverse FP-tree which is a well-
efined tree-form data structure recording data frequency in-
ormation in a depth-first order. However, it has been reported
hat nearly 80% of the computational resources are consumed for
raversing FP-tree in FP-growth [20]. To improve its efficiency,
e design a novel data structure, namely FP-matrix, to store

he frequency information and interestingness measure value of
tem pairs. Furthermore, we redesign the algorithm for finding
requent item pairs from workflow logs, whose performance can
e significantly improved with FP-matrix. In the following, we
tart with introducing the basic definition of the FP-matrix.

efinition 3 (FP-Matrix). Let X = {x1, x2, x3,, xm} be a set of
data items with support count above the support threshold. An
FP-matrix M is a (m−1)× (m−1) matrix, where each element of
the matrix can be defined by a tuple M[xi,xj] = (Cxi,xj , Vxi,xj), where

• Cxi,xj is the support count of an ordered pair {(xi, xj)} in X .
• Vxi,xj is the interestingness measure value of an ordered pair
{(xi, xj)} in X .

In order to efficiently store the support counts and interest-
ingness values, M is defined as a triangular matrix, where its
first index represents items x1 to xm−1 while the second index
represents items x2 to xm.

For clarity, we explain the construction of the FP-matrix by an
example. Fig. 2(a) shows a dataset which is extracted from the
workflow event log. At the beginning, each element of FP-matrix
is defined as a symbol Φ . After the first traverse of the original
dataset, we sort the data items as a : 5, b : 4, d : 4, g : 3, c :
2, e : 2, which is shown in the header table of Fig. 2(b). Then, we
construct the FP-tree and FP-matrix at the same time during the
second traverse of the dataset.

The FP-tree and FP-matrix can be found in Fig. 2(b) and 2(c).
During the second traverse for constructing the FP-tree with FP-
matrix, all data items in the cases are extracted from the dataset,
and then the data items are sorted according to the order shown
in header table of Fig. 2(b). In this algorithm, we scan the cases
in the dataset in turn, and insert the items into the FP-tree P , at
the same time, Cxi,xj is incremented by 1 if {(xi, xj)} is contained
in this case. For instance, for the third case, we extract the items
{a, b, c, d} from this case, the items are inserted into the FP-tree
according to the FP-growth algorithm for constructing the FP-
tree [16], at the same time, the pairs in this case are inserted into
the FP-matrix, the corresponding elements of the FP-matrix are
all incremented by 1. After the traverse of all the cases of the
dataset. The FP-matrix contains all frequency information of the
dataset.

Algorithm 2 Algorithm for Constructing FP-tree with FP-matrix

Input: Original dataset D; Minimum support threshold min_sup
Output: FP-tree P; FP-matrix M

1: Define the list of frequent items:L← Φ

2: for all cases Ti ⊆ D do
3: if item a.count ≥ min_sup then
4: Insert a into L
5: end if
6: end for
7: Sort items of L in descending order by support count.
8: Create the root of the FP-tree P , and label it as ‘‘Root’’
9: Create the FP-matrix M , and let Cxi,xj ← Φ , Vxi,xj ← Φ

10: for all cases Ti ⊆ D do
11: Sort the frequent items in T in descending order by support

count
12: Insert_Tree(Ti, P)

3: Insert_Matrix(Ti, M)
14: end for

Algorithm 3 Procedure for Insert_Tree(Ti, P) [16]
Insert_Tree(Ti, P)

1: Let the sorted data item list in Ti be [e|E], where e is the first
element and E is the remaining list, N.count ← 0

2: if FP-tree P has a child N , and N.item_name = e.item_name
then

3: N.count ← N.count + 1
4: else
5: Create a new node N , and N.count ← 1
6: N.parent ← P
7: let N link to the node with the same item_name via the

node-link structure
8: end if
9: if E ̸= ∅ then

10: Insert_Tree(E, N)
11: end if

Algorithm 4 Procedure for Insert_Matrix(Ti, M)
Insert_Matrix(Ti, M)

1: Cxi,xj ← Φ

2: for i← 1 to k do
3: for j← i+ 1 to k do
4: if {xi, xj} ∈ Ti then
5: Cxi,xj ← Cxi,xj + 1
6: end if
7: end for
8: end for

The procedures for constructing the FP-tree with FP-matrix
are shown in Algorithm 2. The key functions Insert_Tree(Ti, P)
and Insert_Matrix(T , M) are illuminated in Algorithms 3 and 4.
i

478 Y. Huang, J. Huang, C. Liu et al. / Future Generation Computer Systems 113 (2020) 474–487

t
c
t

s
a
t
m
f
c
t

3

m
t
o
c
p
q
m
T

s
b
p
b
r
a
i

Fig. 2. An example of constructing FP-tree with FP-matrix.
s
m
T

T
y

K

w
c
s

P

t
a
m
K
p
y
i
t
t

a
t
f
p
s
t
b
p
o
d

After constructing the FP-tree and FP-matrix, in the procedure
of mining discriminative frequent itemsets, there is no need to
traverse the dataset to obtain the frequency information of the
itemset. We only need to retrieve the FP-matrix, it can reduce
the computational complexity of our algorithm effectively.

Next, we analyze the space complexity of the algorithm for
constructing FP-tree and FP-matrix. Assuming m is the quantity
of frequent items in the header table. Traditional matrix is an
m × m matrix, but there are some repetitive elements in the
matrix, which may lead to high complexity. The FP-matrix is
constructed as a triangular matrix to reduce the storage space.
The FP-matrix is a (m − 1) × (m − 1) echelon matrix, whose
size is

∑m−1
i=1 i = m(m−1)

2 . The storage space can be reduced more
han 50%. It is obvious that the algorithm can reduce the time
omplexity without increasing the storage space significantly at
he same time.

In summary, we construct the FP-matrix at the phase of con-
tructing the FP-tree. The FP-matrix stores the frequent counts
nd interestingness measure values of all item pairs. Based on
he FP-matrix construction, we only need to retrieve the FP-
atrix instead of traversing the FP-tree during the procedure

or discovering frequent 2-itemsets, which can reduce the time
omplexity without increasing the storage space significantly at
he same time.

.4. Direct discriminative mining algorithm

With the algorithm for constructing the FP-tree with FP-
atrix presented, we directly mine the discriminative itemsets in

his sub-section. Traditional frequent pattern mining algorithms
ften adopt a two-step approach, where it first generates the
omplete frequent itemset, and then selects the discriminative
atterns from such candidate itemset. Unlike the traditional fre-
uent pattern mining algorithm, our algorithm mainly focus on
ining the frequent item pairs other than frequent patterns.

herefore, a new algorithm should be designed accordingly.
Most of existing frequent pattern mining algorithms adopt a

upport-confidence framework. They used a threshold to lower
ound the support count or confidence value of the frequent
atterns. Although they worked in many of the cases in reality, a
ad threshold may lead to numerous unexpected non-interesting
esults, resulting in critical drawback to the effectiveness as well
s the performance of the algorithms. To fill this gap, several
nterestingness measures have been proposed, e.g., χ2, Lift, Cosine,

and Kulczynski etc. [25]. In our algorithm, we adopt the Kulczyn-
ski measure (also denote as Kulc for simplicity) to evaluate the
correlations among data items, whose definition can be found as
follows.
 f
Definition 4 (Kulczynski Measure). Kulczynski is a null-invariant
measure. Given two items, x and y, the Kulczynski measure is
defined as.

Kulc(x, y) =
1
2

(P(x|y)+ P(y|x)) (3)

Kulc can be regarded as the average of two confidence mea-
ures values. With the definitions introduced in this paper, Kulc
easure can be expressed in terms of support count, as shown in

heorem 1.

heorem 1. Given two items, x and y, the Kulc measure of x and
is represented by the support count.

ulc(x, y) =
sup(xy)

2
(

1
sup(x)

+
1

sup(y)
) (4)

here sup(xy) means the support count of the pair of {(x, y)}, which
an be obtained from FP-matrix. The sup(x) and sup(y) represent the
upport count of the items x and y, respectively.

roof. Eq. (3) can be expanded as the following form.

Kulc(x, y) =
1
2

(
P(xy)
P(y)

+
P(xy)
P(x)

)

=
1
2

(
sup(xy)

n
sup(y)

n

+

sup(xy)
n

sup(x)
n

)

=
sup(xy)

2
(

1
sup(x)

+
1

sup(y)
) □

(5)

In our algorithm, we select the positively correlated items with
he Kulc measure. Given two items x and y, suppose that items x
nd y are both frequent, that is, sup(x) ≥ min_sup and sup(y) ≥
in_sup, where min_sup is the minimum support threshold. If the
ulc measure of x and y, Kulc(x, y) > ξ , we say the items x, y are
ositively correlated. If Kulc(x, y) < ξ , we believe the items x and
are negatively correlated. If the Kulc(x, y) = ξ , we believe the

tems of x and y are independent. Here ξ is the negative pattern
hreshold that can be obtained from users or by some automatic
echniques [25].

Based on the former definitions and theorems, we design
branch-and-bound algorithm for directly mining discrimina-

ive frequent 2-itemsets. In this algorithm, a queue which stores
requent items with an increasing order according to their sup-
ort count is created, and the positively correlated itemsets are
earched by calculating the interestingness measure value. During
his procedure, the Kulc value for each pair of the items in the
ranch is calculated. If the Kulc value is larger than the negative
attern threshold ξ , then our algorithm selects the item pair out,
therwise skipping them, and so fourth. Algorithm 5 shows the
etail procedures of mining discriminative itemsets, whose key
unction Branch_Search(x, y, z, M) is illuminated in Algorithm 6.

Y. Huang, J. Huang, C. Liu et al. / Future Generation Computer Systems 113 (2020) 474–487 479

O

1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3

Algorithm 5 Algorithm for Mining Discriminative Itemsets

Input: A non-empty FP-tree P; FP-matrix M
utput: Discriminative itemsets β

1: Construct a queue Q , and sort items as support increasing
order

2: β ← ∅

3: while x← DeQueue(Q) do
4: Let y← x.parent, z ← y.parent
5: while x ̸= null do
6: while y ̸= Root do
7: if Vx,y = Φ then
8: Vx,y ← Kulc(x, y)
9: end if
0: β ← β ∪ Branch_Search(x, y, z, M)
1: end while
2: x← x.Link
3: end while
4: end while

Algorithm 6 Procedure for Branch_Search(x, y, z, M)
Branch_Search(x, y, z, M)

1: if z = Root then
2: if Vx,y > ξ then
3: return {(x, y)}
4: end if
5: end if
6: β ← ∅

7: if sup(xy) = sup(xz) then
8: if sup(y) = sup(z) then
9: if Vx,y > ξ then
0: β ← β ∪ {(x, y)} ∪ {(x, z)}
1: end if
2: Let y← z.parent, z ← y.parent
3: else
4: if Vx,y ⩽ ξ then
5: Let y← z.parent, z ← y.parent
6: else
7: β ← β ∪ {(x, y)}
8: Let y← y.parent, z ← y.parent
9: end if
0: end if
1: end if
2: if sup(xy) < sup(xz) then
3: if Vx,y > ξ then
4: β ← β ∪ {(x, y)} ∪ {(x, z)}
5: Let y← z.parent, z ← y.parent
6: else
7: Let y← y.parent, z ← y.parent
8: end if
9: end if
0: if sup(xy) > sup(xz) then
1: if Vx,y > ξ then
2: β ← β ∪ {(x, y)}
3: Let y← y.parent, z ← y.parent
4: else
5: Let y← z.parent, z ← y.parent
6: end if
7: end if
8: return β

We assume that there is a branch γ in the FP-tree, in this
branch, there exists a path from bottom to up, that is x, y, z. Ob-

viously, the support count of these three items has the following
relationship

sup(x) ≤ sup(y) ≤ sup(z) (6)

From the Eq. (4), we know the Kulc measures of item pairs {(x,
y)} and {(x, z)} can be represented as

Kulc(x, y) =
sup(xy)

2
(

1
sup(x)

+
1

sup(y)
) (7a)

Kulc(x, z) =
sup(xz)

2
(

1
sup(x)

+
1

sup(z)
) (7b)

Following, we will analyze all kinds of conditions in our algo-
rithm. According to the relationship of sup(xy) and sup(xz), it can
be categorized to three conditions as follows.

(1) sup(xy) = sup(xz)
In this condition, we analyze the relationship of sup(y) and

sup(z). If sup(y) = sup(z), then Kulc(x, y) = Kulc(x, z). Therefore,
our task can be transferred to the estimation of the correlations
between items x and y.

If sup(y) < sup(z), then Kulc(x, y) > Kulc(x, z). In this con-
dition, if Kulc(x, y) ⩽ ξ , so Kulc(x, z) ⩽ ξ . Then we only need
calculate Kulc(y, z) and compare the relationship between sup(x)
and sup(y). Otherwise we should calculate Kulc(x, z) to estimate
whether the item pair {(x, z)} is positively correlated.

(2) sup(xy) < sup(xz)
In this condition, no matter the relationship between sup(y)

and sup(z). It is obvious that sup(xy) ≤ sup(y), so we can deduce
that Kulc(x, y) < Kulc(x, z). If Kulc(x, y) > ξ , the item pair
{(x, y)} is positively corrected, we can deduce that {(x, z)} is also
positively correlated. Otherwise we must calculate Kulc(x, z) to
estimate whether the item pair {(x, z)} is positively correlated.

(3) sup(xy) > sup(xz)
In this condition, similar with the previous condition. It is

obvious that sup(xy) ≤ sup(y), so we can deduce that Kulc(x, y) >

Kulc(x, z). If Kulc(x, y) ⩽ ξ , the item pair {(x, y)} is not positively
correlated, we can deduce that {(x, z)} is also negative correlated.
Otherwise we must calculate Kulc(x, z) to estimate whether the
item pair {(x, z)} is positively correlated.

In FPMine algorithm, we calculate the interestingness measure
of each node with its parents in the FP-tree, at the same time,
the interestingness measure value should be recorded in FP-
matrix for reusing to reduce the computational overhead of our
algorithm.

4. PFPMine: Parallel frequent pattern based mining algorithm

As the volume of dataset gets larger, most of the traditional
frequent pattern mining algorithms cannot mining frequent pat-
terns with high efficiency due to huge resource requirement or
too much computation consumption. In this section we propose
a parallel algorithm to discover the frequent 2-itemsets, called
PFPMine. This algorithm parallelizes the FPMine algorithm using
MapReduce framework to solve the problem produced by the
emerging large-scale dataset.

MapReduce [26] is a parallel and scalable programming model
for data intensive applications and large scale data analysis. A
MapReduce computation model can be divided into two phase
tasks, which are Map task and Reduce task. The map phase
splits the input dataset into several dataset shards, and each
map task uses a key–value pair as the input, and then a set of
intermediate key–value pairs are generated for next phase task
use. Then the intermediate values are delivered to the reduce
tasks. After shuffling, each reduce task accepts all intermediate
pairs associated with a particular key and generates a final set
of key–value pairs. In frequent pattern mining area, some re-
searchers proposed parallel frequent pattern mining algorithm to

480 Y. Huang, J. Huang, C. Liu et al. / Future Generation Computer Systems 113 (2020) 474–487

i
a

m
n
M
F
d

b
i

c
o
o
p
i
a
i
f

Fig. 3. The overall PFPMine framework.

mprove the performance of traditional frequent pattern mining
lgorithm [27,28].

In light of the characteristics of MapReduce computation
odel, we design a parallel frequent pattern based algorithm,

amely PFPMine. Fig. 3 depicts the framework of PFPMine. PFP-
ine can be divided into two round MapReduce to parallelize the

PMine algorithm. Specifically, the two round MapReduce can be
escribed as follows.

1. The first MapReduce phase is parallelizing the frequency
calculating algorithm. This round divides the workflow log
into several shards and then each mapper picks one shard
of the workflow log to calculate the local frequency infor-
mation. Finally, the reducer is performed to gain the global
frequency information.

2. The second MapReduce phase is parallelizing the discrim-
inative itemsets mining algorithm. This algorithm takes in
the frequent item queue, and divides it into several shards.
In this round, each mapper takes in the divided frequent
item queue to mine the local discriminative itemsets. Sub-
sequently, several reducers are performed to combine the
results which are gained by mapper tasks.

In summary, these two phases parallelize the frequent pattern
ased mining algorithm for mining the discriminative frequent

temsets. Detailed parallel algorithm is explained as follows:
MapReduce framework is able to accelerate the frequency

alculation by its divide-and-conquer programming strategy. In
ur approach, we apply MayReduce technique to the procedures
f item frequency calculation which is the first step of our ap-
roach. Details can be found from Algorithm 7. The basic idea

s to divide the dataset into several shards, each of which is
nalyzed by a mapper. A reducer is assigned to aggregate all the
ntermediate result from mappers and finally obtain the global
requency measurement.
Algorithm 5 can also be parallelized by MapReduce frame-
work. Firstly, the frequent item queue is divided into shards and
delivered to the mappers. The mappers invoke Branch_Search
algorithm searching for frequent itemsets based on FP-tree data
structure. Essentially, each mapper performs the searching on
one branch of the FP-tree. Finally, all the results from mappers
are aggregated by multiple reducers. Such calculation can also be
completed in a parallel way. Details can be found from Algorithm
8.

Algorithm 7 Algorithm for Parallel Frequency Calculating
Mapper(CID, Di)

1: cj ← 0 for all j = 1, 2, ..., n
2: for all aj ∈ Di do
3: cj ← cj + 1
4: end for
5: for all j = 1, 2, ..., n do
6: Emit(aj, cj)
7: end for

Reducer(aj, List[cj])
1: sup(aj)← 0
2: for all cj ∈ List[cj] do
3: sup(aj)← sup(aj)+ cj
4: end for
5: Emit(aj, sup(aj))

Algorithm 8 Algorithm for Parallel Mining Discriminative Item-
sets
Mapper(i, Qi)

1: βj ← ∅ for all j = 1, 2, ..., n
2: while aj ← DeQueue(Qi) do
3: Let y← aj.parent, z ← y.parent
4: while aj ̸= null do
5: while y ̸= Root do
6: if Vaj,y = null then
7: Vaj,y ← Kulc(aj, y)
8: end if
9: βj ← βj∪Branch_Search(aj, y, z, M)

10: end while
11: aj ← aj.Link
12: end while
13: end while
14: for all j = 1, 2, ..., n do
15: Emit(aj, βj)
16: end for
Reducer(aj, List[βj])

1: β ← ∅

2: for all βj ∈ List[βj] do
3: β ← β ∪ βj
4: end for
5: Emit(aj, β)

5. Data placement and backup strategy

Due to the frequent itemsets obtained by proposed algorithm,
the interacting data entities can be stored into the data centers
according to a certain strategy. In this section, a primitive data
placement and backup strategy is designed to investigate the
benefits of our approach.

Fig. 4 illustrates a representative framework of a cloud work-
flow system. Typically, most of the data entities are stored in
the primary data centers, meanwhile, the cloud workflow system
backup the data entities in the secondary data centers. A name

Y. Huang, J. Huang, C. Liu et al. / Future Generation Computer Systems 113 (2020) 474–487 481

i

a
t
w
d

6

o
t

Fig. 4. Framework of cloud workflow system.

center is assigned for managing the storage and backup route of
the data entities. It has been universally acknowledged that the
transmission and backup of workflow data are quite communica-
tively costly in geographically dispersed data centers [29], and
thus we design a scheme based on the discovery results obtained
by our PFPMine algorithm in order to reduce the communication
overhead.

Algorithms 9 and 10 show the data placement and backup
algorithm. Assuming each data center Di have a fixed storage
space |Di| and βj is the set of frequent itemset with the same data
tem xj. Firstly, we select a frequent item pair βj,k ⊆ βj, and then

we compute the relationship between the size of the frequent
itemset βj,k and the data center storage space, if the data center
have the capacity to store the frequent itemset, the frequent
itemset will be stored into the data center, otherwise another
data center with enough storage space will be selected and the
frequent itemset will be stored into it. At the same time, we
backup the data items into the secondary data center. The storage
table ST including the information of data entity placement and
backup will be updated accordingly at the same name center.

Algorithm 9 Algorithm for Data Placement and Backup

Input: A set of frequent itemset βj; Data center Di
Output: Results of data placement and backup

1: Define a storage table: ST ← Φ

2: for all set of frequent itemsets βj with same data item xj do
3: Store_Data(Di, βj)
4: Backup the frequent itemset into the secondary data center
5: Update the table ST in the NameCenter
6: end for

After discovering frequent itemsets, interacting data entities
re placed into data centers according to a certain strategy, and
hus the communication overhead is reduced accordingly. We
ill evaluate the efficiency of our approach based on real-world
atasets, the evaluation details can be found in next section.

. Theoretical analysis and experimental evaluation

In this section, the proposed approach is evaluated from the-
retically aspect and experimentally aspect. First, the computa-
ional overhead is analyzed from a theoretical viewpoint, and
Algorithm 10 Procedure for Store_Data(Di, βj)
Store_Data(Di, βj)

1: Select a frequent item pair βj,k ⊆ βj
2: if |Di|≥ |βj,k| then
3: Store the frequent itemset into the data center
4: else
5: Search another data center with enough storage space
6: Store the frequent itemset into the data center
7: end if
8: |Di|← |Di|−|βj,k|

9: βj ← βj − βj,k
10: Store_Data(Di, βj)

482 Y. Huang, J. Huang, C. Liu et al. / Future Generation Computer Systems 113 (2020) 474–487

T
D

c
p
t

t
r
m
o
s
t
w
u
C

b
u
s
o
o
t
e
v
m
a
f
w
i
a
a
6
f

y
t
t
M
b
Z
q
w
f
b

R

w

o
a
d
a
a

able 3
atasets characteristics.
Datasets #Items Avg.Length #Transactions

New Orleans [30] 106 10.93 327
Chicago [30] 159 10.73 676
New York [30] 155 8.47 1200
Retail [31] 16,469 10.31 88,162
Connect [31] 129 43 67,557

6.2. Experimental evaluation

6.2.1. Datasets
In this paper, we use five real-world datasets with different

haracteristics to evaluate the functionality and performance of
roposed algorithm. Table 3 indicates the statistical characteris-
ics of five datasets.

We firstly adopt Entree Chicago Recommendation Data [30]
o evaluate the functionality of our approach. This dataset is a
eal-life one that reflects detailed user preference and order infor-
ation of different restaurants geographically-dispersed 8 cities

f United States from September 1996 to April 1999. Specific
emantic information of the datasets is of value to illuminate
he effectiveness of our approach. We pick up three groups data
ith different characteristics comes from different cities to eval-
ate the performance of our approach, which are New Orleans,
hicago and New York.

For performance evaluation, we choose another dataset [31]
ecause of the following two reasons. Firstly, performance eval-
ation requires a large volume of testing data especially for
calability analysis, and thus the scales (number of transactions)
f datasets we use in this part are much larger than the previ-
us ones. Secondly, the datasets have been widely adopted for
he performance evaluation of data mining algorithms, and the
xperimental results on such datasets should be with reference
alue when we compare our approach with other traditional data
ining algorithms. However, all the data from [31] has been

nonymized and preprocessed, and hence is not able to be used
or functional validation in the previous part. Among the datasets,
e select two of them with different characteristics. The first one

s a sparse dataset named ‘‘Retail’’, which has 88,162 transactions
nd 16,469 items, whose average length is 10.3 for each trans-
ction. The other one named ‘‘Connect’’ is a dense dataset with
7,557 transactions and 129 items, whose average length is 43
or each transaction.

Before the experimental evaluation, we conduct a brief anal-
sis of the datasets to validate the assumption we have made in
he previous parts of this paper. Illustratively, the dataset with
he largest scale namely Retail is selected, and its Probability

ass Function (PMF) of data item frequencies is analyzed shown
y Fig. 5. Basically, the frequencies of data items conform to
ipf distribution. More specifically, we validate such assumption
uantitatively by analyzing its coefficient of determination [32],
hich has been widely applied to evaluate the goodness of data

itting and prediction. Mathematically, such metric is formulated
y (8) as follows.

2
= 1−

∑m
i=1(yi − fi)2∑m
i=1(yi − y)2

(8)

here yi is the i-th data item of the ground truth, fi is the i-th
predicted data item by the fitting model, and y is the mean value

f the observed data. The value of R2 ranges from 0 to 1, where
n R2 of 1 indicates that the fitting model perfectly fits the real
ata. In our real data based experiments, we obtain R2

= 0.90222
ccording to its definition, which validates the soundness of the
ssumption we made for data frequency distribution.
Fig. 5. The PMF of Retail dataset.

6.2.2. Functional evaluation
We conduct experiments on real-life datasets with specific

semantic information for frequent itemset mining with our PF-
PMine algorithm. Table 4 shows part of the results obtained by
our approach from the datasets, which reveal some potential
relationships of data items. For instance, seafood may be the
specialty of the restaurant named ‘‘Oyster Bars’’ in New Orleans
since a great many of data pairs {SeaFood, Oyster Bars} have been
extracted from the dataset. Chinese in Chicago often have brunch
at the restaurants in weekends, which shows a lifestyle of the
Chinese people abroad. Moreover, it can be concluded from the
data analysis that hamburgers are often ordered in coffee shops in
Chicago. In New York, data analytical results show that Americans
prefer sea food, hamburgers and bear while Italians prefer pizza.
Such results can be with great value for the businessmen for
restaurant management and food recommendations.

Y. Huang, J. Huang, C. Liu et al. / Future Generation Computer Systems 113 (2020) 474–487 483

t
m
s
t
r
t

F
p
o
(
y
m
g
h
m
w

Table 4
Selecting mining results.

Datasets Frequent Itemsets

New Orleans {Oyster Bars, SeaFood}, {Hamburgers, Pizza}
Chicago {Chinese, Weekend Brunch}, {Hamburgers, Coffee Shops}
New York {American, SeaFood}, {Italian, Pizza}, {American, Hamburgers & Bear}
Fig. 6. Communication overhead.
ime of FP-growth and FPMine are obtained by straightforward
easurement, while the parallelized parts of PFPMine are mea-

ured with ten virtual homogeneous nodes. In order to estimate
he error caused by the dynamic changes of experimental envi-
onment, we evaluate the running time for 30 times, and compute
he average of the values.

Fig. 7 shows the execution time of PFPMine, FPMine, and
P-growth on real-world dataset with different scales. Before
arallelization, the results of FP-growth and FPMine indicate both
f their running times are proportional to the scale of datasets
number of transactions), which validates the theoretical anal-
sis in Section 6.1. Comparing with FP-growth, we pay only a
ultiplicative factor for making our approach able to extract fine-

rained frequent item pairs rather than frequent patterns, which
as been proved to bring significant advantages to data place-
ent. Furthermore, after parallelized by the MapReduce frame-

ork, the performance of our approach is significantly improved.
At the cost of only a small quantity of computing resources which
are commonly plentiful in cloud environments, our approach
can be completed in a reasonably small time of O(

√
n). Fig. 7(a)

and 7(b) illustrate that our approach is able to perform well with
high efficiency for both sparse datasets and dense datasets, which
validate the efficacy of our approach in different scenarios. The
results show that PFPMine can reduce the running time by at
least 25%, and preforms with significantly higher efficiency than
FP-growth approach.

To indicate the efficiency of PFPMine comparing with FPMine,
we conduct the experiments for speedup evaluation of PFPMine
based on real-life dataset. Fig. 8 illustrates the speedup of the
PFPMine when we scale up the size of real-life dataset. Fig. 8(a)
shows the speedup goes up slightly with the number of transac-
tion increases from 50,000 to 80,000 on Retail dataset. Fig. 8(b)
shows the speedup goes up slightly with the number of transac-

tions increases from 40,000 to 60,000 on Connect dataset. All of

484 Y. Huang, J. Huang, C. Liu et al. / Future Generation Computer Systems 113 (2020) 474–487
Fig. 7. Performance analysis.
Fig. 8. Speedup analysis.
the results show that PFPMine can improve the performance of
FPMine significantly both on sparse and dense datasets.

7. Related work

7.1. Data-intensive workflow management

In this paper, business process modeling is the foundation of
our research work, which formulates business processes (work-
flow) by formal languages understandable for computers. Tradi-
tional business process modeling approaches focus on the process
of the activities, named process-centric model. It has been re-
searched for over a decade. Some process modeling language
and workflow system have been developed and widely adopted.
Traditional process-centric modeling approach can express the
procedure of activities clearly, but it rarely considers the data in
business process, and thus cannot formulate the operations (read,
write, add, remove, etc.) of global data clearly during the proce-
dures of the design and implementation for the data-intensive
systems. With the emergence of data-intensive applications and
systems, Data-aware modeling approach (also called data-centric
modeling) have been proposed to fill this gap [33,34]. In our
previous work, we have proposed a novel data-aware business
process modeling approach and developed the prototype sys-
tem [19], based on which, the main thrust of this paper is to
propose an efficient scheme of data entity discovery for providing
fundamental theoretical support for data placement and backup
in cloud workflow systems.

In data-aware business process, data entity records the core
information for business operations. Discovering the artifacts is
one of the most important challenges in this area. Recently,
several approaches have been proposed by researchers [35–37].
However, most of the existing approaches neglected the potential
relationships between data entities, which may result in the
drawback for data placement in multiple processes environments.
In this paper, we make an attempt at discovering the inter-
acting data entities in data-intensive workflows to provide the
fundamental support for data placement and backup.

7.2. Data management for cloud workflows

In order to utilize the resource with high efficiency, the most
effective method is to deploy the workflow into the cloud en-
vironment. Data management for cloud workflows is a very im-
portant and challenging problem, which includes data placement
and data backup. It is acknowledged that cloud workflow system

Y. Huang, J. Huang, C. Liu et al. / Future Generation Computer Systems 113 (2020) 474–487 485

l
b
e

o
s
t
i
a
a
P
m
t
s
a
w
r
t
t
e

C

i
W
C

D

c
t

A

n
o
t
(
d
F

R

is designed for different communities for collaborative work,
where distributed applications need to be executed across dif-
ferent data centers. The data movement across different data
centers may cost numerous time and resources, and some re-
searches focused on placement strategies for cloud system. For
instance, Yuan et al. [38] proposed a strategy for data place-
ment in cloud based scientific workflows, which adopts a matrix
based k-means clustering approach to store the data into data
centers. Jaradat et al. [39] presented a novel workflow parti-
tioning and deployment approach, which moves the workflow
computation towards the data to obtain the optimal performance
results. Kumar et al. [40] minimize the average query span us-
ing a workload-aware data placement algorithm for cloud data
management systems. Sun et al. [41] presented an adaptive data
placement approach to reduce data access cost, which places
the data within a data staging area dynamically and adaptively.
Zhang et al. [42] presented a clustering-based algorithm for data
placement to reduce the workload of data transfer between sev-
eral data centers. Besides data placement for cloud workflows,
some researches also presented some approach on data backup
in cloud environment [43–45]. But most of them mainly focused
on the schema of data backup, ignoring studying the importance
level and inter-relationship of large-scale data entities.

In summary, although some contributions have been pro-
posed, they rarely consider the frequent itemsets in business
process, which ignored the importance information of data items.
In certain circumstances, they may result in useless or unimpor-
tant data items during the procedure of data backup, which will
bring more workload to data centers. Therefore, this paper studies
such issues from a very different angle, trying to studying the
importance and frequency levels of data items. Our approach can
provide fundamental theoretical support for data management
(including data placement and backup) for cloud workflows.

7.3. Frequent pattern discovery

Frequent pattern discovery is a research hotspot in the field
of data mining in recent years, which was first proposed by
Agrawal et al. for market basket analysis [46]. Since then, abun-
dant literatures have been dedicated to this research, and sig-
nificant progresses have been made. Apriori is the most typi-
cal algorithm proposed by Agrawal and Srikant, which observed
an interesting downward closure property from super market
shopping [47]. Afterwards, some extensive studies on the im-
provements or extensions of Apriori have been proposed [48,
49]. FP-growth is another algorithm for frequent pattern min-
ing, which mines the complete set of frequent patterns without
candidate generation [16]. Some alternatives or extensions of FP-
growth can improve the performances of the algorithm [50,51],
but they cannot discover the fine-grained frequent 2-itemsets
directly.

We note that the frequent pattern mining is also useful to
other data analysis and mining tasks [52,53] which is similar to
the issue of this paper. On the other hand, however, existing
approaches cannot be directly applied to data entities discovery
due to the characteristics of business processes in cloud work-
flows. Although some Apriori-like algorithms can discover the
frequent 2-itemsets by join arithmetic [17], which can generate
huge useless candidate sets and cost numerous time and re-
sources. The FP-growth and its extensions cannot discover the
fine-grained frequent 2-itemsets directly, which consume about
80% computational resources for traversing FP-tree. In this paper,
we present an approach to mine the fine-grained frequent item
pairs other than the frequent patterns.
8. Conclusion

In this paper, we present a frequent pattern based approach
to discover interacting data entities in cloud workflows. Our
approach first determines the minimum support threshold au-
tomatically, and then constructs FP-tree with FP-matrix, which
stores the support count and interestingness measure values of
item pairs. With such data structure construction, the discrim-
inative frequent 2-itemsets can obtained with high efficiency.
Furthermore, the algorithm is parallelized by MapReduce frame-
work to reduce its overhead from O(n + log2 m) to O(

√
n +

og m). Finally, the efficiency of the algorithms are evaluated by
oth theoretical analysis and real-world data based experimental
valuations.

The main thrust of this paper is to propose an efficient scheme
f data entity discovery for providing fundamental theoretical
upport for data placement and backup in cloud workflow sys-
ems. The motivation is to understand the importance level and
nter-relationship among data by studying the original data oper-
tions in workflows. We also designed a primitive data placement
nd backup strategy based on our data entity discovery approach.
lease note that the detailed design and analysis of data place-
ent and backup schemes are out of the scope of this paper. In

he future, we plan to guide the design the detail data placement
trategies for cloud workflows using the results obtained by our
pproach. We also noticed that, due to the limitation of hardware,
e evaluate the communication overhead of our algorithm by

eal-world datasets in laboratory environments. We will develop
he data-intensive system and record the real-life data to conduct
he experiment on real homogeneous nodes to investigate the
fficiency of our approach.

RediT authorship contribution statement

Yuze Huang: Conceptualization, Methodology, Writing - orig-
nal draft, Writing - review & editing. Jiwei Huang: Methodology,

riting - review & editing. Cong Liu: Writing - review & editing.
hengning Zhang: Software, Validation.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This work is supported by the Project of Science and Tech-
ology Research Program of Chongqing Education Commission
f China (No. KJQN201900708), Beijing Natural Science Founda-
ion(No. 4202066), National Natural Science Foundation of China
Nos. 61972414, 61902222). Taishan Scholars Program of Shan-
ong Province (No. tsqn201909109), and Fundamental Research
unds for Central Universities (No. 2462018YJRC040)

eferences

[1] I. Gorton, P. Greenfield, A. Szalay, R. Williams, Data-intensive computing
in the 21st century, Computer 41 (4) (2008) 30–32.

[2] Z.T. Can, M. Demirbas, Smartphone-based data collection from wireless
sensor networks in an urban environment, J. Netw. Comput. Appl. 58
(2015) 208–216.

[3] Y. Peng, J. Li, S. Park, K. Zhu, M.M. Hassan, A. Alsanad, Energy-efficient
cooperative transmission for intelligent transportation systems, Future
Gener. Comput. Syst. 94 (2019) 634–640.

[4] M. Elshenawy, B. Abdulhai, M. El-Darieby, Towards a service-oriented
cyber-physical systems of systems for smart city mobility applications,
Future Gener. Comput. Syst. 79 (2018) 575–587.

http://refhub.elsevier.com/S0167-739X(19)33490-9/sb1
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb1
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb1
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb2
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb2
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb2
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb2
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb2
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb3
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb3
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb3
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb3
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb3
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb4
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb4
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb4
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb4
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb4

486 Y. Huang, J. Huang, C. Liu et al. / Future Generation Computer Systems 113 (2020) 474–487
[5] D. Calvanese, G. De Giacomo, M. Montali, Foundations of data-aware
process analysis: A database theory perspective, in: Proceedings of the
32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS 2013), 2013, pp. 1–12.

[6] A. Nigam, N.S. Caswell, Business artifacts: An approach to operational
specification, IBM Syst. J. 42 (3) (2003) 428–445.

[7] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing
as the 5th utility, Future Gener. Comput. Syst. 25 (6) (2009) 599–616.

[8] K. Kanagaraj, S. Swamynathan, Structure aware resource estimation for
effective scheduling and execution of data intensive workflows in cloud,
Future Gener. Comput. Syst. 79 (2018) 878–891.

[9] L. Zeng, B. Veeravalli, A.Y. Zomaya, An integrated task computation and
data management scheduling strategy for workflow applications in cloud
environments, J. Netw. Comput. Appl. 50 (2015) 39–48.

[10] T. Xie, SEA: A striping-based energy-aware strategy for data placement
in RAID-structured storage systems, IEEE Trans. Comput. 57 (6) (2008)
748–761.

[11] R. Tudoran, A. Costan, G. Antoniu, Overflow: Multi-site aware big data
management for scientific workflows on clouds, IEEE Trans. Cloud Comput.
4 (1) (2016) 76–89.

[12] L. Cui, J. Zhang, L. Yue, Y. Shi, H. Li, D. Yuan, A genetic algorithm based
data replica placement strategy for scientific applications in clouds, IEEE
Trans. Serv. Comput. 11 (2018) 727–739.

[13] X. Li, L. Zhang, Y. Wu, X. Liu, E. Zhu, H. Yi, F. Wang, C. Zhang, Y. Yang,
A novel workflow-level data placement strategy for data-sharing scientific
cloud workflows, IEEE Trans. Serv. Comput. 12 (3) (2019) 370–383.

[14] B. Yu, J. Pan, Location-aware associated data placement for geo-distributed
data-intensive applications, in: 2015 IEEE Conference on Computer
Communications (INFOCOM 2015), 2015, pp. 603–611.

[15] I. Casas, J. Taheri, R. Ranjan, L. Wang, A.Y. Zomaya, A balanced scheduler
with data reuse and replication for scientific workflows in cloud computing
systems, Future Gener. Comput. Syst. 74 (2017) 168–178.

[16] J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate genera-
tion, in: Proceedings of International Conference on Management of Data
(SIGMOD 2000), 2000, pp. 1–12.

[17] C.C. Aggarwal, J. Han, Frequent Pattern Mining, Springer, 2014.
[18] W.M. Aalst, Process Mining: Data Science in Action, Springer, 2016.
[19] Y. Huang, J. Huang, B. Wu, J. Chen, Modeling and analysis of data depen-

dencies in business process for data-intensive services, China Commun. 14
(10) (2017) 151–163.

[20] G. Grahne, J.F. Zhu, Fast algorithms for frequent itemset mining using
FP-trees, IEEE Trans. Knowl. Data Eng. 17 (10) (2005) 1347–1362.

[21] H. Yun, D. Ha, B. Hwang, K.H. Ryu, Mining association rules on significant
rare data using relative support, J. Syst. Softw. 67 (3) (2003) 181–191.

[22] K. Wang, Y. He, J.W. Han, Pushing support constraints into association rules
mining, IEEE Trans. Knowl. Data Eng. 15 (3) (2003) 642–658.

[23] A. Corral, G. Boleda, R. Ferrer-i Cancho, Zipf’s law for word frequencies:
Word forms versus lemmas in long texts, PLoS One 10 (7) (2015) 1–23.

[24] L.A. Adamic, Zipf, power-laws, and pareto-a ranking tutorial, 2000,
available at http://www.hpl.hp.com/research/idl/papers/ranking/ranking.
html.

[25] T. Wu, Y. Chen, J. Han, Re-examination of interestingness measures in
pattern mining: a unified framework, Data Min. Knowl. Discov. 21 (3)
(2010) 371–397.

[26] J. Dean, S. Ghemawat, MapReduce: Simplified data processing on large
clusters, in: Proceedings of the 6th Conference on Symposium on Opearting
Systems Design & Implementation (OSDI 2004), 2004, pp. 107–113.

[27] H. Li, Y. Wang, D. Zhang, M. Zhang, E.Y. Chang, PFP: Parallel FP-
growth for query recommendation, in: Proceedings of ACM Conference
on Recommender Systems (Recsys 2008), pp. 107–114.

[28] Y. Xun, J. Zhang, X. Qin, Fidoop: Parallel mining of frequent itemsets using
mapreduce, IEEE Trans. Syst. Man Cybern. 46 (3) (2016) 313–325.

[29] E. Deelman, A. Chervenak, Data management challenges of data-intensive
scientific workflows, in: Proceeding of IEEE International Symposium on
Cluster Computing and the Grid, 2008, pp. 687–692.

[30] R. Burke, Entree chicago recommendation data, 2000, available at http:
//infolab.cs.uchicago.edu/entree.

[31] B. Goethals, M.J. Zaki, Frequent pattern mining dataset repository, 2003,
available at http://fimi.ua.ac.be/data/.

[32] J.L. Devore, Probability and Statistics for Engineering and the Sciences,
ninth ed., Brooks/Cole Publishing Company, 2015.

[33] E. Damaggio, R. Hull, R. Vaculin, On the equivalence of incremental
and fixpoint semantics for business artifacts with guard-stage-milestone
lifecycles, Inf. Syst. 38 (4) (2013) 561–584.
[34] Y. Sun, J. Su, J. Yang, Universal artifacts: A new approach to business
process management (BPM) systems, ACM Trans. Manag. Inf. Syst. 7 (3)
(2016) 3:1–3:26.

[35] E.H.J. Nooijen, B.F. Van Dongen, D. Fahland, Automatic discovery of
data-centric and artifact-centric processes, in: Proceeding of Interna-
tional Workshop on Business Process Management (BPM 2012), 2012, pp.
316–327.

[36] V. Popova, D. Fahland, M. Dumas, Artifact lifecycle discovery, Int. J. Coop.
Inf. Syst. 24 (1) (2015) 1–44.

[37] X. Lu, M. Nagelkerke, D. van de Wiel, D. Fahland, Discovering interacting
artifacts from ERP systems, IEEE Trans. Serv. Comput. 8 (6) (2015) 861–873.

[38] D. Yuan, Y. Yang, X. Liu, J. Chen, A data placement strategy in scientific
cloud workflows, Future Gener. Comput. Syst. 26 (8) (2010) 1200–1214.

[39] W. Jaradat, A. Dearle, A. Barker, Workflow partitioning and deployment on
the cloud using orchestra, in: Proceedings of the 7th IEEE/ACM Interna-
tional Conference on Utility and Cloud Computing (UCC 2014), 2014, pp.
251–260.

[40] K.A. Kumar, A. Quamar, A. Deshpande, S. Khuller, SWORD: workload-aware
data placement and replica selection for cloud data management systems,
VLDB J. 23 (6) (2014) 845–870.

[41] Q. Sun, T. Jin, M. Romanus, H. Bui, F. Zhang, H. Yu, H. Kolla, S. Klasky,
J. Chen, M. Parashar, Adaptive data placement for staging-based coupled
scientific workflows, in: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC 2015),
2015, pp. 65:1–65:12.

[42] J. Zhang, M. Wang, J. Luo, F. Dong, J. Zhang, Towards optimized scheduling
for data-intensive scientific workflow in multiple datacenter environment,
Concurr. Comput.-Pract. Exp. 27 (18, SI) (2015) 5606–5622.

[43] J. Lin, C. Chen, J.M. Chang, QoS-Aware data replication for data-intensive
applications in cloud computing systems, IEEE Trans. Cloud Comput. 1 (1)
(2013) 101–115.

[44] M. Wang, L. Zhu, Z. Zhang, Risk-aware intermediate dataset backup
strategy in cloud-based data intensive workflows, Future Gener. Comput.
Syst. 55 (2016) 524–533.

[45] Y. Ebadi, N.J. Navimipour, An energy-aware method for data replication
in the cloud environments using a tabu search and particle swarm
optimization algorithm, Concurr. Comput.: Pract. Exper. 31 (1) (2019) 1–10.

[46] R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets
of items in large databases, in: Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data (SIGMOD 93), 1993, pp.
207–216.

[47] R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large
databases, in: Proceedings of the 20th International Conference on Very
Large Data Bases (VLDB 94), 1994, pp. 487–499.

[48] F. Geerts, B. Goethals, J. Van Den Bussche, A tight upper bound on the
number of candidate patterns, in: Proceedings of 1st IEEE International
Conference on Data Mining (ICDM 2001), pp. 155–162.

[49] S.K. Yun, N. Rountree, Finding sporadic rules using apriori-inverse, in:
Proceedings of the 9th Pacific-Asia Conference on Advances in Knowledge
Discovery and Data Mining (PAKDD 2005), 2005, pp. 97–106.

[50] Y. Jiang, M. Zhao, C. Hu, L. He, H. Bai, J. Wang, A parallel FP-growth
algorithm on world ocean atlas data with multi-core CPU, J. Supercomput.
75 (2) (2019) 732–745.

[51] J. Ragaventhiran, M.K.K. Devi, Map-optimize-reduce: CAN tree assisted FP-
growth algorithm for clusters based FP mining on hadoop, Future Gener.
Comput. Syst. 103 (2020) 111–122.

[52] N. Kashmar, M. Atieh, Mining frequent patterns to identify vertical han-
dover parameters in cellular networks, J. Amb. Intell. Hum. Comput. 9 (1)
(2018) 31–42.

[53] Y. Chen, P. Yuan, M. Qiu, D. Pi, An indoor trajectory frequent pattern
mining algorithm based on vague grid sequence, Expert Syst. Appl. 118
(2019) 614–624.

http://refhub.elsevier.com/S0167-739X(19)33490-9/sb6
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb6
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb6
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb7
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb7
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb7
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb7
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb7
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb8
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb8
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb8
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb8
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb8
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb9
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb9
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb9
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb9
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb9
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb10
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb10
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb10
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb10
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb10
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb11
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb11
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb11
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb11
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb11
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb12
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb12
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb12
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb12
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb12
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb13
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb13
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb13
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb13
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb13
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb15
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb15
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb15
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb15
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb15
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb17
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb18
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb19
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb19
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb19
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb19
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb19
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb20
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb20
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb20
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb21
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb21
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb21
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb22
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb22
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb22
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb23
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb23
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb23
http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html
http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html
http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb25
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb25
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb25
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb25
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb25
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb28
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb28
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb28
http://infolab.cs.uchicago.edu/entree
http://infolab.cs.uchicago.edu/entree
http://infolab.cs.uchicago.edu/entree
http://fimi.ua.ac.be/data/
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb32
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb32
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb32
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb33
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb33
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb33
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb33
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb33
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb34
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb34
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb34
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb34
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb34
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb36
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb36
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb36
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb37
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb37
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb37
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb38
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb38
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb38
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb40
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb40
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb40
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb40
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb40
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb42
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb42
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb42
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb42
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb42
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb43
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb43
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb43
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb43
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb43
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb44
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb44
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb44
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb44
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb44
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb45
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb45
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb45
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb45
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb45
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb50
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb50
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb50
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb50
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb50
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb51
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb51
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb51
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb51
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb51
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb52
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb52
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb52
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb52
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb52
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb53
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb53
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb53
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb53
http://refhub.elsevier.com/S0167-739X(19)33490-9/sb53

Y. Huang, J. Huang, C. Liu et al. / Future Generation Computer Systems 113 (2020) 474–487 487
Yuze Huang is an assistant professor in the School
of Information Science and Engineering at Chongqing
Jiaotong University. He received the Ph.D. degree in
Computer Science and Technology from Beijing Uni-
versity of Posts and Telecommunications in 2018, the
M.Eng. degree from Kunming University of Science
and Technology in 2013 and the B.Sc. degree from
Hangzhou Dianzi University in 2008. His main research
interests include services computing and edge com-
puting. He is a member of the IEEE and ACM. Email:
huangyz@cqjtu.edu.cn

Jiwei Huang is a professor and the Dean of the De-
partment of Computer Science and Technology at China
University of Petroleum-Beijing. He is the director
of Beijing Key Laboratory of Petroleum Data Mining.
He received the Ph.D. degree and B.Eng. degree both
in computer science and technology from Tsinghua
University in 2014 and 2009, respectively. He was
a visiting scholar at Georgia Institute of Technology.
His research interests are in services computing and
performance evaluation. He is a member of the IEEE
and ACM. Email: huangjw@cup.edu.cn
Cong Liu is a professor in the School of Computer

mailto:huangyz@cqjtu.edu.cn
mailto:huangjw@cup.edu.cn

	PFPMine: A parallel approach for discovering interacting data entities in data-intensive cloud workflows
	Introduction
	Preliminaries
	Frequent pattern based data entities discovery
	Framework of discovery approach
	Calculation of support threshold
	FP-tree with FP-matrix construction
	Direct discriminative mining algorithm

	PFPMine: Parallel frequent pattern based mining algorithm
	Data placement and backup strategy
	Theoretical analysis and experimental evaluation
	Theoretical analysis
	Experimental evaluation
	Datasets
	Functional evaluation
	Performance evaluation

	Related work
	Data-intensive workflow management
	Data management for cloud workflows
	Frequent pattern discovery

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

